binomialheap.ss
```#lang typed/scheme #:optimize

(provide filter remove fold (rename-out [heap-map map])
empty? insert find-min/max delete-min/max
merge sorted-list heap Heap)

(define-struct: (A) Node ([rank : Integer]
[val : A]
[trees : (Listof (Node A))]))

(define-struct: (A) Heap ([comparer : (A A -> Boolean)]
[trees : (Listof (Node A))]))

;; Checks for empty heap
(: empty? : (All (A) ((Heap A) -> Boolean)))
(define (empty? heap)
(null? (Heap-trees heap)))

;; An empty heap
(define empty null)

;; Helper function to get the rank of the node
(: rank : (All (A) ((Node A) -> Integer)))
(define (rank node)
(Node-rank node))

;; Returns the root of the node
(: root : (All (A) ((Node A) -> A)))
(define (root node)
(Node-val node))

;; merges two given nodes
(: link : (All (A) ((Node A) (Node A) (A A -> Boolean) -> (Node A))))
(let ([val1 (Node-val node1)]
[val2 (Node-val node2)]
(if (func val1 val2)
(make-Node rank1 val1 (cons node2 (Node-trees node1)))
(make-Node rank1 val2 (cons node1 (Node-trees node2))))))

;; Inserts a node into the tree
(: insTree : (All (A) ((Node A) (Listof (Node A)) (A A -> Boolean) -> (Heap A))))
(define (insTree node trees comparer)
(let ([fst (car trees)])
(if (< (rank node) (rank fst))
(make-Heap comparer (cons node trees))
(insNode (link node fst comparer) (cdr trees) comparer))))

;; Inserts an element into the heap
(: insert : (All (A) (A (Heap A) -> (Heap A))))
(define (insert val heap)
(let ([newNode (make-Node 0 val null)]
[comparer (Heap-comparer heap)]
[trees (Heap-trees heap)])
(if (null? trees)
(make-Heap comparer (list newNode))
(insTree newNode trees comparer))))

;; Helper for insTree (mutually recursive)
(: insNode : (All (A) ((Node A) (Listof (Node A)) (A A -> Boolean) -> (Heap A))))
(define (insNode node trees comparer)
(if (null? trees)
(make-Heap comparer (list node))
(insTree node trees comparer)))

;; Merges two given heaps
(: merge : (All (A) ((Heap A) (Heap A) -> (Heap A))))
(define (merge heap1 heap2)
(let ([hp1-trees (Heap-trees heap1)]
[hp2-trees (Heap-trees heap2)]
[comp (Heap-comparer heap1)])
(cond
[(null? hp2-trees) heap1]
[(null? hp1-trees) heap2]
[else (merge-helper hp1-trees hp2-trees comp)])))

;; Helper for merge
(: merge-helper :
(All (A) ((Listof (Node A)) (Listof (Node A)) (A A -> Boolean) -> (Heap A))))
(define (merge-helper heap1-trees heap2-trees comp)
(let* ([fst-tre1 (car heap1-trees)]
[rst-tre1 (cdr heap1-trees)]
[fst-tre2 (car heap2-trees)]
[rst-tre2 (cdr heap2-trees)]
[heap1 (make-Heap comp rst-tre1)]
[heap2 (make-Heap comp rst-tre2)]
[rank1 (rank fst-tre1)]
[rank2 (rank fst-tre2)])
(cond
[(< rank1 rank2)
(make-Heap
comp (list* fst-tre1
(Heap-trees (merge heap1 (make-Heap comp heap2-trees)))))]
[(> rank1 rank2)
(make-Heap
comp (list* fst-tre2
(Heap-trees (merge (make-Heap comp heap1-trees) heap2))))]
[else
(Heap-trees (merge heap1 heap2)) comp)])))

;; Returns the min element if min-heap else returns the max element
(: find-min/max : (All (A) ((Heap A) -> A)))
(define (find-min/max heap)
(let ([trees (Heap-trees heap)])
(cond
[(null? trees) (error 'find-min/max "given heap is empty")]
[(null? (cdr trees)) (Node-val (car trees))]
[else (let* ([comparer (Heap-comparer heap)]
[x (root (car trees))]
[y (find-min/max (make-Heap comparer (cdr trees)))])
(if (comparer x y) x y))])))

;; Deletes min or max element (depends on min or max heap)
(: delete-min/max : (All (A) ((Heap A) -> (Heap A))))
(define (delete-min/max heap)
(: getMin : (All (A) ((Listof (Node A)) (A A -> Boolean) -> (Heap A))))
(define (getMin inthp-trees func)
(let* ([fst-trees (car inthp-trees)]
[rst-trees (cdr inthp-trees)]
[int-heap (make-Heap func inthp-trees)])
(if (null? rst-trees)
int-heap
(let* ([pair (getMin rst-trees func)]
[fst-pair (car (Heap-trees pair))]
[rst-pair (cdr (Heap-trees pair))])
(if (func (root fst-trees) (root fst-pair))
int-heap
(make-Heap func (cons fst-pair
(cons fst-trees rst-pair))))))))
(if (null? (Heap-trees heap))
(error 'delete-min/max "given heap is empty")
(let* ([func (Heap-comparer heap)]
[newpair (getMin (Heap-trees heap) func)]
[newpair-trees (Heap-trees newpair)])
(merge (make-Heap func (reverse (Node-trees (car newpair-trees))))
(make-Heap func (cdr newpair-trees))))))

;; Returns a sorted list (sorting depends on min or max heap)
(: sorted-list : (All (A) ((Heap A) -> (Listof A))))
(define (sorted-list heap)
(if (empty? heap)
null
(cons (find-min/max heap) (sorted-list (delete-min/max heap)))))

;; Heap constructor
(: heap : (All (A) ((A A -> Boolean) A * -> (Heap A))))
(define (heap func . lst)
(foldl (inst insert A) ((inst make-Heap A) func empty) lst))

;; similar to list map function
(: heap-map :
(All (A C B ...) ((C C -> Boolean)
(A B ... B -> C)
(Heap A)
(Heap B) ... B -> (Heap C))))
(define (heap-map comp func fst . rst)
(: in-map :
(All (A C B ...) ((Heap C) (A B ... B -> C) (Heap A) (Heap B) ... B -> (Heap C))))
(define (in-map accum func fst . rst)
(if (or (empty? fst) (ormap empty? rst))
accum
(apply in-map
(insert (apply func (find-min/max fst) (map find-min/max rst)) accum)
func
(delete-min/max fst)
(map delete-min/max rst))))
(apply in-map ((inst make-Heap C) comp empty) func fst rst))

;; similar to list fold functions
(: fold : (All (A C B ...)
((C A B ... B -> C) C (Heap A) (Heap B) ... B -> C)))
(define (fold func base hep . heps)
(if (or (empty? hep) (ormap empty? heps))
base
(apply fold
func
(apply func base (find-min/max hep) (map find-min/max heps))
(delete-min/max hep)
(map delete-min/max heps))))

;; similar to list filter function
(: filter : (All (A) ((A -> Boolean) (Heap A) -> (Heap A))))
(define (filter func hep)
(: inner : (All (A) ((A -> Boolean) (Heap A) (Heap A) -> (Heap A))))
(define (inner func hep accum)
(if (empty? hep)
accum
[tail (delete-min/max hep)])
(inner func tail (insert head accum))
(inner func tail accum)))))
(inner func hep ((inst make-Heap A) (Heap-comparer hep) empty)))

;; similar to list remove function
(: remove : (All (A) ((A -> Boolean) (Heap A) -> (Heap A))))
(define (remove func hep)
(: inner : (All (A) ((A -> Boolean) (Heap A) (Heap A) -> (Heap A))))
(define (inner func hep accum)
(if (empty? hep)
accum