#lang scribble/manual @(require unstable/scribble) @defmodule/this-package[bankers-queue] @(require (for-label (planet krhari/pfds:1:0/bankers-queue)) (planet krhari/pfds:1:0/helper)) @(require scribble/eval) @(provide (for-label (all-from-out))) @(define evaluate (make-base-eval)) @(evaluate '(require typed/racket)) @(evaluate '(require "bankers-queue.ss")) @title{Banker's Queue} A Queue is nothing but a FIFO data structure. A Banker's Queue is a amortized queue obtained using Bankers method. It provides a amortized running time of @bold{@italic{O(1)}} for @scheme[head], @scheme[tail] and @scheme[enqueue] operations. To obtain this amortized running time, the data structure uses the techniques, lazy evaluation and memoization. Banker's Queue internally uses Streams for lazy evaluation. For Streams, see @secref["streams"] @defform[(Queue A)]{A banker's queue of type @racket[A].} @defproc[(queue [a A] ...) (Queue A)]{ Function @scheme[queue] creates a Banker's Queue with the given inputs. @examples[#:eval evaluate (queue 1 2 3 4 5 6) ] In the above example, the queue obtained will have 1 as its head element. } @defthing[empty (Queue Nothing)]{ An empty queue} @defproc[(empty? [que (Queue A)]) Boolean]{ Function @scheme[empty?] checks if the given queue is empty or not. @examples[#:eval evaluate (empty? (queue 1 2 3 4 5 6)) (empty? empty) ]} @defproc[(enqueue [a A] [que (Queue A)]) (Queue A)]{ Function @scheme[enqueue] takes an element and a queue and adds the given element into the @scheme[queue]. @examples[#:eval evaluate (enqueue 10 (queue 4 5 6)) ] In the above example, @scheme[(enqueue 10 (queue 4 5 6))] enqueues 10 to the end of the queue and returns @scheme[(queue 4 5 6 10)]. } @defproc[(head [que (Queue A)]) A]{ Function @scheme[head] takes a @scheme[queue] and returns the first element in the queue if its a non empty queue else throws an error. @examples[#:eval evaluate (head (queue 10 4 3 12)) (head empty) ]} @defproc[(tail [que (Queue A)]) (Queue A)]{ Function @scheme[tail] takes a queue and returns the same queue without the first element. If the queue is empty it throws an error. @examples[#:eval evaluate (tail (queue 4 5 6)) (tail empty) ] In the above example, @scheme[(tail (queue 4 5 6))], returns @scheme[(queue 5 6)]. } @defproc[(queue->list [que (Queue A)]) (Queue A)]{ Function @scheme[queue->list] takes a queue and returns a list of elements. The list will have head of the given queue as its first element. @examples[#:eval evaluate (queue->list (queue 10 2 34 4 15 6)) (queue->list empty) ]} @defproc[(map [func (A B ... B -> C)] [que1 (Queue A)] [que2 (Queue B)] ...) (Queue A)]{ Function @scheme[map] is similar to @|racket-map| for lists. @examples[#:eval evaluate (queue->list (map add1 (queue 1 2 3 4 5 6))) (queue->list (map * (queue 1 2 3 4 5 6) (queue 1 2 3 4 5 6))) ]} @defproc[(fold [func (C A B ... B -> C)] [init C] [que1 (Queue A)] [que2 (Queue B)] ...) C]{ Function @scheme[fold] is similar to @|racket-foldl| or @|racket-foldr| @margin-note{@scheme[fold] currently does not produce correct results when the given function is non-commutative.} @examples[#:eval evaluate (fold + 0 (queue 1 2 3 4 5 6)) (fold * 1 (queue 1 2 3 4 5 6) (queue 1 2 3 4 5 6)) ]} @defproc[(filter [func (A -> Boolean)] [que (Queue A)]) (Queue A)]{ Function @scheme[filter] is similar to @|racket-filter|. @examples[#:eval evaluate (define que (queue 1 2 3 4 5 6)) (queue->list (filter (λ: ([x : Integer]) (> x 5)) que)) (queue->list (filter (λ: ([x : Integer]) (< x 5)) que)) (queue->list (filter (λ: ([x : Integer]) (<= x 5)) que)) ]} @defproc[(remove [func (A -> Boolean)] [que (Queue A)]) (Queue A)]{ Function @scheme[remove] is similar to @|racket-filter| but @scheme[remove] removes the elements which match the predicate. @examples[#:eval evaluate (queue->list (remove (λ: ([x : Integer]) (> x 5)) (queue 1 2 3 4 5 6))) (queue->list (remove (λ: ([x : Integer]) (< x 5)) (queue 1 2 3 4 5 6))) (queue->list (remove (λ: ([x : Integer]) (<= x 5)) (queue 1 2 3 4 5 6))) ]} @(close-eval evaluate)