

DDE Client

A Dynamic Link Library for Dynamic Data Exchange

Dipl.-Ing. Robert Matovinovic
Harare, Zimbabwe

robert.matovinovic@web.de

31.10.2006

 2/23

Contents

DDE Client...1

Contents ..2

Abstract ...2

Introduction..3

Features ..3

Requirements ..3

Files...4

Installation ...4

Provided procedures and variables..4

Conventions...4

Concept ...4

Procedures ..5

Variables..8

Supported Clipboard Formats..8

Usage..9

Structure of DDE process ..9

Synchronous/Asynchronous Transactions ..10

Data Handling..10

Memory Issues ..10

Error Handling..11

Multiple DDE Connections ...12

Example...12

Inside DDEClient.dll...13

Comments on Procedures ...13

Callback Function ...13

Comments on Data structures ...13

Thanks...14

License..14

Abstract
This is the documentation for DDEClient.dll a dynamic link library providing DDE connectivity in
C.

 3/23

Introduction

DDEClient.dll is a dynamic link library, which exports C procedures to set up a DDE (dynamic
data exchange) client. A DDE client is a program, which controls, submit or retrieve data from
another program called server. The server provides a DDE service. DDE is an old method to
communicate between programs under Windows OS. Still there are applications out there which
can only communicate with others via DDE. Such an application was the reason to build
DDEClient.

Although the DLL can be used with any program, which can import C procedures, it was written
to build an interface with PLT scheme v3.50 and its foreign function interface.

Funny enough, one should think there must be already hell of a lot DDE stuff around to do that
without C/C++ programming. Nothing that I found worked out of the box for my case. And
nothing compiled nearly error free under Microsoft Visual C++ 7 (MSVC++ 7), the one I
happened to have access to. So this became my first project in C/C++ and Windows
programming. I should have started with something easier, I know now.

The source was developed in Microsoft VS.NET with VC++ 7. The code uses some features of
MSVC++ 7. As far as I know the only Microsoft specific thing I use is atlstr.h, which uses
Microsoft specific C++, for the string handling of error messages. But the DLL exports pure C
procedures. All in all that means it does not automatically compile with another compiler without
any changes. I did not bother over such details. C, C++, Windows and DDE gave me enough
troubles.

Currently the software is in beta state and need intense testing that I cannot do on my own. So I
appreciate any user and bug reports. Send them including questions, suggestions and critics to
robert.matovinovic@web.de.

Features

• DDEClient.dll enables DDE connections between a client which uses the dll and up to 20
services/server applications.

• Request, execute and poke transactions can be performed synchronously and
asynchronously. Advise transactions cannot be performed. They are not implemented
since I don’t have any idea how they work and no examples to test.

• Error reporting, if there are errors during conversation. Errors can be displayed by
system message boxes or the message strings can be displayed wherever the
programmer wants to.

• Consistent naming and return values of exported functions to easily get used to them.

The software is provided as is no warranty is given

Requirements

DDEClient.dll was developed with Microsoft Visual Studio .NET 2003 and tested under Windows
XP SP2.

 4/23

Files

With this file you should get the following files:

DDEClient.dll Compiled library ready to use

DDEClient.lib Lib file for static linking of library

DDEClient.h Header file for dll use in other C/C++ programs

DDEClient.cpp Source file

DCErrors.h Header file for DDEClient.cpp for texts of error messages

DDEClientDLL.pdf This file

DDEClientCons.exe Example console application

DDEClientCons.cpp Source file for example

Installation

Copy the file DDEClient.dll into any folder you desire. Unless you copy it in the same folder as
the program that it calls or in Windows\system32 or Windows\system or whatever you have
specified in the PATH environment variable you have to call the library with the full path.

Provided procedures and variables

Conventions

All exported functions and Variables begin with “DC”, which stands for DdeClient like DCInit.

All exported functions except void DCFinalize() and char* DCLastError are boolean to handle
errors easily.

Concept

The concept of DDEClient.dll is driven by setting up a DDE conversation with error handling in
an easy and consistent manner. Therefore all functions except two are Boolean. Their return
values indicate if a function succeeded or not. Subsequently it is possible to handle an error by
an if-statement. This approach is supported by an error display function, which will retrieve the
error message.

Since the functions do not return any data of the DDE conversation, there is an exported data
structure, which let access the data if any are returned.

 5/23

Procedures

bool DCInit()

Initializes DDEML.dll which contains all the DDE procedures used by the other procedures. Has
to be called before any other of the following procedures.

bool DCConnect(WORD* pConvNo, char szService[], char szTopic[])

pConvNo [out] Pointer to a variable which takes the conversation number. The
conversation number is the index which always has to be given the following
procedures to distinguish multiple conversations.

szService [in] Name of the DDE service application, i.e. “winword”, usually the service
name is the name of the programs exe-file.

szTopic [in] String of the topic the service is connected for. There are different themes
over which you can communicate with the service. Mostly a topic is a file
name which is currently open in the service. Most services support also the
“system” topic.

Establishes DDE connection to a service of a server application, i.e. Excel.

bool DCTransaction(WORD wC, char szType[],char szItem[], char szData[],

 char szFormat[], int nTimeout, char szAccess[])

wC [in] conversation number, given by DCConnect

szType [in] transaction type, can be “execute”, “poke”, “request” not case sensitive

szItem [in] Somehow the command you want to send to the service. I.e. to see what
topics (see above) are available you can set it to “Topics”, after connecting the
service with topic system, but not all programs support this topic.

szData [in] the data you send by a poke command

szFormat [in] format of DDE data. It determines in which format the data between the
applications is sent. See “Supported Clipboard Formats” below.

nTimeout [in] any number, which indicates the waiting time in milliseconds until the
transaction waits to be finished before returning to the program. If the number
is greater 0 and the service doesn’t return in time an error occurs. 0 indicates
an asynchronous transaction, which means the program is not waiting for the
answer from the service but resumes execution. See also
DCAsynchTransactionCompleted

szAccess [in] flag for format of the DDE data, can be “byte” or “string”, for convenience
to access the data without further conversion. It is different from szFormat in
so far that szFormat handles the data format in between the communicating
applications; the service has to know in which format the client wants the data
depending on the command given. How the user formats it, is something
different.

It is a general procedure for execute, poke and request transactions, the communication with the
service.

 6/23

bool DCRequestString(WORD wC, char szItem[], int nTimeout)

Abbreviation of a DCTransaction request, which always stores DDE data as string; meaning
of arguments see above.

bool DCRequest(WORD wC, char szItem[], char szFormat[], int nTimeout)

Abbreviation of a DCTransaction request, which always stores DDE data as bytes; meaning
of arguments see above.

bool DCAsynchTransactionCompleted(WORD wC, DWORD dwTransID, bool bWait)

wC [in] conversation number, given by DCConnect

dwTransID [in] transaction number, returned by the transaction, see
DCDA[wC]->dwTransID

bWait [in] flag to indicate whether the procedure should wait until the transaction is
completed before returning (true) or do the test for finishing only once and
return (false)

Important procedure for asynchronous transactions. Since the program does not wait for
asynchronous transactions to be finished, otherwise they were synchronous, at one stage the
program itself must check if the transaction is completed. This is especially necessary for
request transactions because otherwise the DDE data cannot be accessed. Every transaction
gets it unique ID. With this ID and the conversation number can be checked if the transaction
has completed. If so the procedure returns true otherwise false.

Note: This procedure can only be used safely if no other transaction has been executed between
the call for the transaction and its call. This is because all messages sent by the service,
regardless which transaction and which conversation are concerned, will be dispatched by the
procedure, and only the one indicated by the procedure parameters will be checked for. So
others may be finished as well but cannot be indicated by the procedure, because the messages
which cause their finishing are already processed. In such a case, DCDA[i]->dwTransID = =
DCDA[i]->dwCbTransID can be checked and if true the transaction is finished.

bool DCAbandonTransaction(WORD wC, DWORD dwTransID)
wC [in] conversation number, given by DCConnect

dwTransID [in] transaction number, returned by the transaction, see
DCDA[wC]->dwTransID

Procedure to abandon an asynchronous transaction if it takes to long or for whatever reason

bool DCFreeDdeMem(WORD wC)

wC [in] conversation number, given by DCConnect

Frees so called handles of the DDE connection and frees memory allocated to access DDE
data.

Important! Procedure has to be called after every request transaction otherwise memory
consumption increases with next request transaction and cannot be freed later on.

 7/23

bool DCDisconnect(WORD wConvNo)

wConvNo [in] conversation number, given by DCConnect

Closes down the DDE connection to a service of a server, frees memory

bool DCUninit()

Uninitialize the DDEML.dll

void DCFinalize()

Frees memory used by DDEClient.dll, which was not freed previously, what is most important for
error handling, but is not able to free memory whose pointers were already changed, which
happens if you forget to call DCFreeDdeMem after a request transaction.

char* DCLastError()

Returns either an error string if the variable bDCErrorExport is true or displays the error
message in a message box.

Note: Giving back the error message in a message box is not advisable except for starting to
make oneself familiar with the library, because the display of the message box does not
automatically stop the calling program, but the executions in the DLL. That means if a message
box appears other calls to the dll will fail until the message box is clicked away and therefore
cause further errors. So it is advisable to handle the error strings in the calling program by
setting DCErrorExport to TRUE, which is the default.

char* DCVersion()

returns the version of the dll.

 8/23

Variables

DCDA[wC]

DDE data structure for each conversation accessing data received by DDE transaction. Since
the procedures do not return any data, except DCConnect which gives back the conversation
number, this data structure holds all the variables to access the data.

wC [in] conversation number, given by DCConnect

pData BYTE*, pointer to begin of DDE data returned by the call of DdeAccessData
during the transaction or by the callback function

dwLen DWORD, length of DDE data returned by DdeAccessData
pszData char*, string pointer to DDE data, if the data should be accessed as string
szAccType[6] char, string for access type of data, this is a variable for the convenience to

indicate if the DDE data should be returned directly as string or bytes. Can be
set to “string” or “byte”

dwTransID DWORD, ID of transaction, used to determine completion of an asynchronous
transaction by comparing it with dwCbTransID. If both are equal the
transaction has been completed

dwCbTransID DWORD, ID of transaction, returned by callback function with asynch.
transaction by comparing it with dwTransID. If both are equal the transaction
has been completed.

bDCErrorExport

Boolean, controls the output of DCLastError(). Set to TRUE DCLastError() gives back the error
message as a string, what means it exports it to the calling program. Set to FALSE
DCLastError() displays the last error message in a message box, not exporting it.

Supported Clipboard Formats

The formats can be used by DDEClient functions in the szFormat variable as strings. They
determine the structure of the DDE data which is returned by the service. How to retrieve the
data out of this formats in your DDE conversation you have to look up the Windows SDK. As
long as you use text based formats things should work fine. For other formats you have to set
szAccess in any case to “byte”.

CF_TEXT Null-terminated, plain ANSI text in a global memory block.

CF_BITMAP A bitmap compatible with Windows 2.x.

CF_METAFILEPICT A Windows metafile with some additional information about how the
metafile should be displayed.

CF_SYLK An ASCII text format used by some older Microsoft products.

CF_DIF Software Art's data interchange format (DIF). Also an ASCII text format.

CF_TIFF Tag image file format (TIFF) data in a global memory block.

CF_OEMTEXT Similar to CF_TEXT but using the OEM character set.

CF_DIB A global memory block containing a Windows device-independent

 9/23

bitmap (DIB) as a BITMAPINFO structure followed by the bitmap bits.

CF_PALETTE A color-palette handle. (Used in conjunction with CF_DIB.)

CF_PENDATA Data is for the pen extensions to Windows.

CF_RIFF Resource interchange file format (RIFF) data as a global memory block.

CF_WAVE A specific case of RIFF in which the contained data is a waveform
(sampled sound).

Usage

Structure of DDE process

To implement a DDE conversation you need to set up a number of steps which are described
below.

As structure of DDE process in this document is regarded the set of commands which is needed
for a successful DDE conversation. The procedures used in DDEClient.dll have to be used as
follows.

DCInit Initializes DDEML.dll
 DCConnect Establishes DDE connection to a

service
 DCTransaction or
 DCRequestString or
 DCRequest

One of these procedures actually does
the DDE transaction, i.e. open a new
file, send/request data

 DCAsynchTransactionCompleted Necessary only to retrieve data of
asynchronous transactions

 Do anything with your DDE data
 DCFreeDdeMem Necessary after every request

transaction when data handling is
finished, if there are more than one
between DCConnect and
DCDisconnect. Otherwise memory
leaks occur

 DCDisconnect Closes down the DDE connection to a
service of a server, frees memory

DCUninit Uninitializes DDEML.dll
DCFinalize Frees memory used by DDEClient.dll,

but not necessarily all, see Memory
Issues

DCInit and DCUninit have only to be called once in a program. DCConnect, DCDisconnect can
be called indefinite times as a pair in a program, with the desired transaction(s) in between.
DCFreeDdeMem has to be called after each request transaction when all DDE data processing
is done and for any reason DCDisconnect is not appropriate to call. This may be if you want to
omit to call DCConnect, DCDisconnect every time with a transaction. DCFreeDdeMem is not
incorporated in the transaction procedures, to leave the freedom to the programmer, what to do

 10/23

with the DDE data. Otherwise the data had to be copied to a buffer, which has to have a fixed
format, which might not suit the data in terms of data type and length of data.

The important procedures for the conversation are DCTransaction, DCRequestString,
DCRequest. DCTransaction is the most general. It can be used for request, execute and poke
transactions. DCRequestString is a convenient abbreviation of DCTransaction, which always
stores DDE data as string. DCRequest abbreviates also DCTransaction but stores DDE data in
bytes, thus leaving it to the programmer how to use the data.

Synchronous/Asynchronous Transactions

There are these to modes of transactions. Synchronous transactions wait for the service to
answer for a certain time, after that they signal an error. During the transaction as long as it is
not finished or the timeout is not reached it enters a modal loop which blocks all other actions of
the program.

Asynchronous transactions are appropriate, if you don’t want to limit your transaction by a
timeout, when it has to be finished. Another advantage is the possibility to execute other
calculations in the calling program while the transaction is processed by the service, because
the transaction doesn’t enter a modal loop until it is finished as in synchronous mode. But you
have to call DCAsynchTransactionCompleted in order to retrieve data after an asynchronous
request transaction. This seems a strange behavior but the callback function which processes
the data of an asynchronous transaction is only invoked, if the message from the service is catch
by PeekMessage in DCAsynchTransactionCompleted.

Data Handling

Handling the data of the DDE conversation the DCDA structure is used. There is an array of
currently 20 such structures, which means it is possible to have 20 connections to different
services a one time. DCDA allows accessing the data returned by a transaction. The only
transaction which gives back data now is the request transaction.

Besides DCTransaction there are two abbreviated types of request transactions:
DCRequestString and DCRequest. The first writes data as string. The second writes data as
bytes. Both write the data on the heap which is accessed through pointers of the DCDA
structure. DCDA[i]->pszData for the string variant DCDA[i]->pData and DCDA[i]->dwLen, as
pointer and length information, for the byte variant. This approach does not limit the size of data,
but data is written to the heap which means in fact they are present double in memory.
Therefore it is of big importance to free memory as soon as the data is not used any more.

If an error occurs during a transaction which allocates memory (only request transactions) the
memory is freed by the error branch of the transaction automatically. However memory allocated
for the conversation is not freed then, since it is up to the programmer how he handles the error.
To quit the program completely use DCFinalize to free all allocated memory.

Memory Issues

The dll can provide access to DDE data only by writing it to the heap to dynamically adjust the
space which is needed. Therefore memory has to be freed explicitly after usage for any request
transaction. This is partly done automatically by the dll, partly the user is responsible for that,
because it is not known in advance, when the user will not need the data anymore. There are

 11/23

two possible schemes to follow to assure memory freeing (DCInit and DCUninit are omitted in
that pseudo code):

1. DCConnect
 DCTransaction (or DCRequest, or DCRequestString)
 Do anything with your data
DCDisconnect

2. DCConnect
 DCTransaction (or DCRequest, or DCRequestString)
 Do anything with your data
 DCFreeDdeMem
 DCTransaction (or DCRequest, or DCRequestString)
 Do anything with your data
 DCFreeDdeMem
 .
 .
 .
DCDisconnect

The first scheme is to prefer if there are only a few DDE commands to send. The second is to
prefer if you have to communicate extensively, since DCConnect may take some time to connect
to the service over and over again.

Note: If you forget to free memory in the second scheme between transactions this memory
becomes inaccessible while still allocated! Thus causing a memory leak which can consume all
your memory, if for example you make this mistake in a loop.

Keep in mind, the space once assigned for the program on the heap will never be reduced, by
freeing memory. It is kept as memory space the program can use. Freeing memory means
therefore that the heap already assigned to the program can be used for other assignments.
Should the already assigned heap be too small, heap is added. The heap will grow with the
number of conversations run parallel. To this is added the size of the biggest single DDE data
which is returned from a service. If you wish to reduce the heap assigned to the program
completely even despite you free memory every time you should, close all conversations and
call DCFinalize().

Error Handling

All DDE procedures return FALSE, if they do not succeed. In that case they save a message in a
CString before they return. This CString is accessed by the procedure DCLastError. To get the
error message one has to check for the success of the procedure and if not call DCLastError().

C Example code:

if(!DCTransaction(wConvNo,"request",szItem,szData,szFormat,1000, "string"))

 ErrorOccured();

else

{

 // output data to console after synchronous transaction complete

 cprintf("\r\n string:\r\n%s\r\n",DCDA[wConvNo]->pszData);

 // free memory after data usage

 DCFreeDdeMem(wConvNo);

}

 12/23

void ErrorOccured()

{

 if (bDCErrorExport)

 // print error message to Console

 cprintf("\r\nError: %s\r\n",DCLastError());

 else

 // display error in message box

 DCLastError();

}

The example above how simple error handling can be implemented. The procedure
ErrorOccured() could handle also anything you want to be handled.

Note: The check if a sent command was processes properly by the service is not consistent.
Whereas a wrong request command does not return data, you can’t take that check for execute
or poke commands. Thus make sure that all the commands you send are error free!

Note: Error messages are not conversation specific. There is only one queue of error messages
for all conversations.

Multiple DDE Connections

You can connect to up to 20 service applications at one time. DCConnect takes a pointer to a
variable in which a conversation number is stored which specifies a certain conversation.
Subsequently this conversation number has to be used for every action concerning this
conversation and its data.

With asynchronous transactions it is possible to parallelize the connections thus making parallel
computation possible.

The conversation number for different conversations starts from 0! The next conversation
number will always be determined by the first unused number. That means if you open for
example 3 conversations which will have the numbers 0, 1 and 2, and you close conversation 1
and opens a new one, this new one will get the conversation number 1, since it is the first free
number in the row then.

Example

The file DDEClientCons.cpp gives commented examples of the usage of DDEClient.dll.
DDEClientCons.exe is the compiled console application of DDEClientCons.cpp using Microsoft
Word as service application. Open Microsoft Word, make sure you have write access to your
C:\ drive and there is no file named test.doc.

 13/23

Inside DDEClient.dll

Here are some comments on development issues of the dll.

Comments on Procedures

Callback Function

The callback function handles transactions of the DDE session. It reacts to certain types of
transactions. A client application can not invoke every transaction so only some of them are
handled in the callback function.

XTYP_XACT_COMPLETE is only invoked, when a transaction is asynchronous. The invocation is
operation system dependent. DCAsynchTransactionCompleted considers this.

XTYP_CONNECT is not needed; it is invoked on the service side to state that a connection is
accepted.

XTYP_DISCONNECT is invoked, if the partner application in our case the service is terminating the
connection.

XTYP_ERROR is invoked currently on only one DDEML error by Microsofts implementation that is
out of memory. And this is only because during DDE initialization the flag MF_ERRORS is set.

Comments on Data structures

The DLL defines two data structures for keeping data related to the DDE conversation. They are
named DDEVARS and DCDATAACCESS.

DDEVARS keeps all variables needed by the conversation for the genuine DDE commands.
Their names are the same as in the reference for the DdeClientTransaction command of

the Windows SDK. DDEVARS is only needed inside the DLL.

DCDATAACCESS keeps the application specific variables to access the DDE data returned by
DdeClientTransaction with request transactions and to check whether an asynchronous

transaction has been completed. A pointer to the data structure is exported, so that it can be
accessed from programs calling DLL procedures.

Memory for both structures is allocated explicitly, which is especially important with
asynchronous transactions, since variables on file scope will be deallocated after the callback
function terminates. Therefore memory has to be freed explicitly by calling DCDdeDisconnect.
Also the structure definition is in the header file for in the calling program otherwise the pointer to
the structure cannot be imported.

Since there are different conversations possible at the same time the data structures of every
single conversation have to be separated. This is done by an array of pointers, which addresses
the data of each conversation by a distinct array index.

 14/23

Thanks

I owe a lot concerning this project to the following people, companies, which I never met but
through the presence of their work on the internet:

• www.angelfire.com/biz/rhaminisys/ddeinfo.html for their info on DDE and their
example archive xlddec.zip

• Jürgen Wolf and Galileo Computing for his very instructive book on C programming “C
von A bis Z”, at www.galileo-press.de/openbook/c_von_a_bis_z/

• Steven Randy Davis for his book “C++ for Dummies”

• www.functionx.com, who ever are behind it, for its perfect tutorial on creating dlls at
www.functionx.com/visualc/libraries/win32dll.htm, I wouldn’t have started without it.

• Faweb, Takebishi for their DDE example at
http://www.faweb.net/us/ioserver/sample_vc.html

• Graeme S. Roy for his library mpatrol to check this dll for memory leaks at
www.cbmamiga.demon.co.uk/mpatrol/,

• Robert Schmitt for his article and binaries to get mpatrol up and running so quickly at
www.codeguru.com/cpp/w-p/win32/tutorials/article.php/c12231/.

• Microsofts knowledgebase for some articles like KB279721, but the DDE
documentation is mostly quiet unreadable in my opinion.

License

This software and all related documentation and files are licensed under GNU Lesser General
Public License. A copy of it is printed here:

 GNU LESSER GENERAL PUBLIC LICENSE

 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.

 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

 Everyone is permitted to copy and distribute verbatim copies

 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

 as the successor of the GNU Library Public License, version 2, hence

 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some

specially designated software packages--typically libraries--of the

 15/23

Free Software Foundation and other authors who decide to use it. You

can use it too, but we suggest you first think carefully about whether

this license or the ordinary General Public License is the better

strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,

not price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge

for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of

it in new free programs; and that you are informed that you can do

these things.

 To protect your rights, we need to make restrictions that forbid

distributors to deny you these rights or to ask you to surrender these

rights. These restrictions translate to certain responsibilities for

you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you. You must make sure that they, too, receive or can get the source

code. If you link other code with the library, you must provide

complete object files to the recipients, so that they can relink them

with the library after making changes to the library and recompiling

it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the

library, and (2) we offer you this license, which gives you legal

permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that

there is no warranty for the free library. Also, if the library is

modified by someone else and passed on, the recipients should know

that what they have is not the original version, so that the original

author's reputation will not be affected by problems that might be

introduced by others.

 Finally, software patents pose a constant threat to the existence of

any free program. We wish to make sure that a company cannot

effectively restrict the users of a free program by obtaining a

restrictive license from a patent holder. Therefore, we insist that

any patent license obtained for a version of the library must be

consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the

ordinary GNU General Public License. This license, the GNU Lesser

General Public License, applies to certain designated libraries, and

is quite different from the ordinary General Public License. We use

this license for certain libraries in order to permit linking those

libraries into non-free programs.

 When a program is linked with a library, whether statically or using

a shared library, the combination of the two is legally speaking a

combined work, a derivative of the original library. The ordinary

General Public License therefore permits such linking only if the

entire combination fits its criteria of freedom. The Lesser General

Public License permits more lax criteria for linking other code with

the library.

 16/23

 We call this license the "Lesser" General Public License because it

does Less to protect the user's freedom than the ordinary General

Public License. It also provides other free software developers Less

of an advantage over competing non-free programs. These disadvantages

are the reason we use the ordinary General Public License for many

libraries. However, the Lesser license provides advantages in certain

special circumstances.

 For example, on rare occasions, there may be a special need to

encourage the widest possible use of a certain library, so that it becomes

a de-facto standard. To achieve this, non-free programs must be

allowed to use the library. A more frequent case is that a free

library does the same job as widely used non-free libraries. In this

case, there is little to gain by limiting the free library to free

software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free

programs enables a greater number of people to use a large body of

free software. For example, permission to use the GNU C Library in

non-free programs enables many more people to use the whole GNU

operating system, as well as its variant, the GNU/Linux operating

system.

 Although the Lesser General Public License is Less protective of the

users' freedom, it does ensure that the user of a program that is

linked with the Library has the freedom and the wherewithal to run

that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and

modification follow. Pay close attention to the difference between a

"work based on the library" and a "work that uses the library". The

former contains code derived from the library, whereas the latter must

be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE

 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other

program which contains a notice placed by the copyright holder or

other authorized party saying it may be distributed under the terms of

this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work

which has been distributed under these terms. A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language. (Hereinafter, translation is

included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for

making modifications to it. For a library, complete source code means

 17/23

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

 Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it). Whether that is true depends on what the Library does

and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.

 You may charge a fee for the physical act of transferring a copy,

and you may at your option offer warranty protection in exchange for a

fee.

 2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices

 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no

 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a

 table of data to be supplied by an application program that uses

 the facility, other than as an argument passed when the facility

 is invoked, then you must make a good faith effort to ensure that,

 in the event an application does not supply such function or

 table, the facility still operates, and performs whatever part of

 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has

 a purpose that is entirely well-defined independent of the

 application. Therefore, Subsection 2d requires that any

 application-supplied function or table used by this function must

 be optional: if the application does not supply it, the square

 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

 18/23

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote

it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Library.

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library. To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.) Do not make any other change in

these notices.

 Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library". Such a

work, in isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

contains portions of the Library), rather than a "work that uses the

library". The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file

that is part of the Library, the object code for the work may be a

 19/23

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library. The

threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work. (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer's own use and reverse

engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License. You must supply a copy of this License. If the work

during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License. Also, you must do one

of these things:

 a) Accompany the work with the complete corresponding

 machine-readable source code for the Library including whatever

 changes were used in the work (which must be distributed under

 Sections 1 and 2 above); and, if the work is an executable linked

 with the Library, with the complete machine-readable "work that

 uses the Library", as object code and/or source code, so that the

 user can modify the Library and then relink to produce a modified

 executable containing the modified Library. (It is understood

 that the user who changes the contents of definitions files in the

 Library will not necessarily be able to recompile the application

 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the

 Library. A suitable mechanism is one that (1) uses at run time a

 copy of the library already present on the user's computer system,

 rather than copying library functions into the executable, and (2)

 will operate properly with a modified version of the library, if

 the user installs one, as long as the modified version is

 interface-compatible with the version that the work was made with.

 c) Accompany the work with a written offer, valid for at

 least three years, to give the same user the materials

 specified in Subsection 6a, above, for a charge no more

 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy

 20/23

 from a designated place, offer equivalent access to copy the above

 specified materials from the same place.

 e) Verify that the user has already received a copy of these

 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it. However, as a special exception,

the materials to be distributed need not include anything that is

normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

 It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system. Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

 7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work

 based on the Library, uncombined with any other library

 facilities. This must be distributed under the terms of the

 Sections above.

 b) Give prominent notice with the combined library of the fact

 that part of it is a work based on the Library, and explaining

 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License. Any

attempt otherwise to copy, modify, sublicense, link with, or

distribute the Library is void, and will automatically terminate your

rights under this License. However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions. You may not impose any further

 21/23

restrictions on the recipients' exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties with

this License.

 11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all. For example, if a patent

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if

written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new

versions of the Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation. If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free

programs whose distribution conditions are incompatible with these,

 22/23

write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our

decision will be guided by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that

everyone can redistribute and change. You can do so by permitting

redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

 To apply these terms, attach the following notices to the library. It is

safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

 <one line to give the library's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or

 modify it under the terms of the GNU Lesser General Public

 License as published by the Free Software Foundation; either

 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 Lesser General Public License for more details.

 23/23

 You should have received a copy of the GNU Lesser General Public

 License along with this library; if not, write to the Free Software

 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301

USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the library, if

necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the

 library `Frob' (a library for tweaking knobs) written by James Random

Hacker.

 <signature of Ty Coon>, 1 April 1990

 Ty Coon, President of Vice

That's all there is to it!

	DDE Client
	A Dynamic Link Library for Dynamic Data Exchange

	Contents
	Abstract
	Introduction
	Features
	Requirements
	Files
	Installation
	Provided procedures and variables
	Conventions
	Concept
	Procedures
	Variables

	Supported Clipboard Formats
	Usage
	Structure of DDE process
	Synchronous/Asynchronous Transactions

	Data Handling
	Memory Issues
	Error Handling
	Multiple DDE Connections
	Example

	Inside DDEClient.dll
	Comments on Procedures
	Callback Function

	Comments on Data structures

	Thanks
	License

