
A Portable Pakrat Parser Library for ShemeTony Garnok-Jones <tonyg�lshift.net>27th August 2005Pakrat parsing is a memoizing, baktraking reursive-desent parsing teh-nique that runs in time and spae linear in the size of the input text. The tehniquewas originally disovered by Alexander Birman in 1970 [1℄, and Bryan Ford tookup the idea for his master's thesis in 2002 [4, 3, 2℄. For detailed information on thetehnique, please see Bryan Ford's web page athttp://pdos.sail.mit.edu/~baford/pakrat/This doument desribes an R5RS Sheme library of parsing ombinators imple-mented using the pakrat parsing algorithm. The main interfaes are the pakrat-parsemaro (setion 3) and the ombinators into whih it expands (setion 2), thebase-generator->results funtion (setion 1.2), and the aessors for parse-resultreords (setion 1.1).1 Data StruturesThis setion desribes the data strutures that make up the ore of the pakratparsing algorithm, and some of the low-level proedures that operate on them.1.1 parse-resultA parse-result reord desribes the results of an attempt at a parse at a partiularposition in the input stream. It an either reord a suessful parse, in whih aseit ontains an assoiated semanti-value, or a failed parse, in whih ase it ontainsa parse-error struture.(parse-result? <objet>) → <boolean>This is a prediate whih answers #t if and only if its argument is a parse-resultreord.(parse-result-suessful? <parse-result>) → <boolean>This prediate returns #t if its argument represents a suessful parse, or #f if itrepresents a failed parse.(parse-result-semanti-value <parse-result>) → <objet> or #fIf the argument represents a suessful parse, this funtion returns the assoiatedsemanti-value; otherwise, it will return #f.
1

(parse-result-next <parse-result>) → <parse-results> or #fIf the argument represents a suessful parse, this funtion returns a parse-resultsreord representing the parsed input stream starting immediately after the parsethis parse-results represents. For instane, given an input stream [a, b, , d, e℄, ifthe parse-result given to parse-result-next had ompleted suessfully, onsumingthe [a, b, ℄ pre�x of the input stream and produing some semanti value, thenthe parse-results returned from parse-result-next would represent all possible parsesstarting from the [d, e℄ su�x of the input stream.(parse-result-error <parse-result>) → <parse-error> or #fIf the argument represents a failed parse, this funtion returns a parse-error stru-ture; otherwise, it may return a parse-error struture for internal implementationreasons (to do with propagating errors upwards for improved error-reporting - seesetion 3.2.4 of [3℄), or it may return #f.(make-result <semanti-value> <next-parse-results>)→<parse-result>This funtion onstruts an instane of parse-result representing a suessful parse.The �rst argument is used as the semanti value to inlude with the new parse-result, and the seond argument should be a parse-results struture representingthe loation in the input stream from whih to ontinue parsing.(make-expeted-result <parse-position> <objet>) → <parse-result>This funtion onstruts an instane of parse-result representing a failed parse. Theparse-position in the �rst argument and the value in the seond argument are usedto onstrut a variant of a parse-error reord for inlusion in the parse-result thatreports that a partiular kind of value was expeted at the given parse-position.(make-message-result <parse-position> <string>) → <parse-result>This funtion onstruts an instane of parse-result representing a failed parse. Theparse-position in the �rst argument and the string in the seond argument are usedto onstrut a variant of a parse-error reord for inlusion in the parse-result thatreports a general error message at the given parse position.(merge-result-errors <parse-result> <parse-error>) → <parse-result>This funtion propagates error information through a partiular parse result. Theparse-error ontained in the �rst argument is ombined with the parse-error fromthe seond argument, and the resulting parse-error struture is returned embeddedin the error �eld of a opy of the �rst argument.1.2 parse-resultsA parse-results reord notionally desribes all possible parses that an be attemptedfrom a partiular point in an input stream, and the results of those parses. Itontains a parse-position reord, whih orresponds to the position in the inputstream that this parse-results represents, and a map assoiating �key objets� withinstanes of parse-result.Atomi input objets (known as �base values�; usually either haraters or token/semanti-value pairs) are represented speially in the parse-results data struture, as an op-timisation: the two �elds base and next represent the impliit suessful parse of a2

base value at the urrent position. The base �eld ontains a pair of a token-lass-identi�er and a semanti value unless the parse-results data struture as a whole isrepresenting the end of the input stream, in whih ase it will ontain #f.(parse-results? <objet>) → <boolean>This is a prediate whih answers #t if and only if its argument is a parse-resultsreord.(parse-results-position <parse-results>) → <parse-position> or #fReturns the parse-position orresponding to the argument. An unknown positionis represented by #f.(parse-results-base <parse-results>)→ (ons <kind-objet> <value-objet>)or #fIf the argument orresponds to the end of the input stream, this funtion returns#f; otherwise, it returns a pair, where the ar is to be interpreted as a base lexialtoken lass identi�er (for instane, �symbol�, �string�, �number�) and the dr is tobe interpreted as the semanti value of the token.(parse-results-token-kind <parse-results>) → <kind-objet> or #fThis funtion returns the ar (the token lass identi�er) of the result of parse-results-base, if that result is a pair; otherwise it returns #f.(parse-results-token-value <parse-results>) → <value-objet> or #fThis funtion returns the dr (the semanti value) of the result of parse-results-base,if that result is a pair; otherwise it returns #f.(parse-results-next <parse-results>) → <parse-results> or #fThis funtion returns the parse-results reord representing the position in the inputstream immediately after the argument's base token. For instane, if the basetokens used represented haraters, then this funtion would return the parse-resultsrepresenting the next harater position; or, if the base tokens represented lexemes,then this funtion would return a representation of the results obtainable startingfrom the next lexeme position. The value #f is returned if there is no next position(that is, if the argument represents the �nal possible position before the end-of-stream).(base-generator->results <generator-funtion>) → <parse-results>This funtion is used to set up an initial input stream of base tokens. The argumentis to be a nullary funtion returning multiple-values, the �rst of whih is to be aparse-position reord or #f, and the seond of whih is to be a base token, that is apair of a token lass identi�er and a semanti value. The argument is alled everytime the parser needs to read a fresh base token from the input stream.
3

(prepend-base <parse-position><base-value> <parse-results>)→<parse-results>This funtion e�etively prepends a base token to a partiular parse-results. Thisan be useful when implementing extensible parsers: using this funtion in a suitableloop, it is possible to splie together two streams of input.For instane, if r is a parse-results representing parses over the input tokenstream '((b . 2) (. 3)), then the result of the all(prepend-base #f '(a . 1) r)is a new parse-results representing parses over the input stream '((a . 1) (b. 2) (. 3)).The �rst argument to prepend-base, the parse-position, should be either a parse-position representing the loation of the base token being prepended, or #f if theinput position of the base token is unknown.(prepend-semanti-value <parse-position><key-objet> <semanti-value><parse-results>) → <parse-results>This funtion is similar to prepend-base, but prepends an already-omputed se-manti value to a parse-results, again primarily for use in implementing extensibleparsers. The resulting parse-results is assigned the given parse-position, and hasan entry in its result map assoiating the given key-objet with the given semanti-value and input parse-results.(results->result <parse-results> <key-objet> <result-thunk>)→<parse-result>This funtion is the entral funtion that drives the parsing proess. It examinesthe result map in the parse-results given to it, searhing for an entry mathing thegiven key-objet. If suh an entry is found, the parse-result struture assoiatedwith the key is returned; otherwise, the nullary result-thunk is alled, and theresulting parse-result is both stored into the result map and returned to the allerof results->result.1.3 parse-errorParse-error strutures represent olleted error information from attempted parses.They ontain two kinds of error report, following [3℄: a olletion of �expeted token�messages, and a olletion of free-format message strings.(parse-error? <objet>) → <boolean>This is a prediate whih answers #t if and only if its argument is a parse-errorreord.(parse-error-position <parse-error>) → <parse-position> or #fRetrieves the parse-position in the input stream that this parse-error is desribing.A #f result indiates an unknown position.(parse-error-expeted <parse-error>) → (list-of <objet>)Retrieves the set (represented as a list) of token lass identi�ers that ould haveallowed the parse to ontinue from this point.4

(parse-error-messages <parse-error>) → (list-of <string>)Retrieves the list of error messages assoiated with this parse-error.(make-error-expeted <parse-position> <objet>) → <parse-error>Construts an �expeted token� parse-error reord from its arguments. Called bymake-expeted-result (setion 1.1).(make-error-message <parse-position> <string>) → <parse-error>Construts an �general error message� parse-error reord from its arguments. Calledby make-message-result (setion 1.1).(parse-error-empty? <parse-error>) → <boolean>Returns #t if its argument ontains no expeted tokens, and no general error mes-sages; otherwise returns #f. Used internally by merge-parse-errors (setion 1.3).(merge-parse-errors <parse-error> <parse-error>) → <parse-error>Merges two parse-error reords, following [3℄. If one reord represents a positionearlier in the input stream than the other, then that reord is returned; if they bothrepresent the same position, the �expeted token� sets are unioned and the generalmessage lists are appended to form a new parse-error reord at the same position.The standard parsing ombinators all this funtion as appropriate to propagateerror information through the parse.1.4 parse-positionA parse-position reord represents a harater loation in an input stream.(make-parse-position <�lename> <linenumber> <olumnnumber>) →<parse-position>Construts a parse-position reord from its arguments. The given �lename may be#f if the �lename is unknown or not appropriate for the input stream the parse-position is indexing into.(parse-position? <objet>) → <boolean>This is a prediate whih answers #t if and only if its argument is a parse-positionreord.(parse-position-�le <parse-position>) → <string> or #fRetrieves the �lename assoiated with a parse-position reord. Returns #f if the�lename is absent or not appropriate for this input stream.(parse-position-line <parse-position>) → <number>Retrieves the line number this parse-position represents. Line numbers begin at 1;that is, all haraters on the very �rst line in a �le will have line number 1.
5

(parse-position-olumn <parse-position>) → <number>Retrieves the olumn number within a line that this parse-position represents. Col-umn numbers begin at 0; that is, the very �rst harater of the very �rst line in a�le will have line number 1 and olumn number 0.(top-parse-position <string>) → <parse-position>Construts a parse-position representing the very beginning of an input stream.The argument is passed into make-parse-position as the ��lename� parameter, andso may be either a string or #f.(update-parse-position <parse-position><harater>) →<parse-position>Given a position, and the harater ourring at that position, returns the positionof the next harater in the input stream. Most haraters simply inrement theolumn number. Exeptions to this rule are: #\return, whih resets the olumnnumber to zero; #\newline, whih both resets the olumn number to zero andinrements the line number; and #\tab, whih inrements the olumn number tothe nearest multiple of eight, just as a terminal with an eight-olumn tab stopsetting might do.(parse-position->string <parse-position>) → <string>Converts a parse-position reord into an emas-ompatible display format. If the�lename in the parse-position is unknown, the string �<??>� is used in its plae.The result is of the formfilename:linenumber:olumnnumberfor example, main.:33:7(parse-position>? <parse-position> <parse-position>) → <boolean>Returns #t if the �rst parse-position is more advaned in the input stream than theseond parse-position. Either or both positions may be #f, representing unknownpositions; an unknown position is onsidered to be less advaned in the input streamthan any known position. Note that the �lename assoiated with eah parse-positionis ompletely ignored � it is the aller's responsibility to ensure the two positionsare assoiated with the same input stream.2 Parsing CombinatorsParsing ombinators are funtions taking a parse-results struture and returninga parse-result struture. Eah ombinator attempts to parse the input stream insome manner, and the result of the ombinator is either a suessful parse with anassoiated semanti value, or a failed parse with an assoated error reord.This setion desribes the proedures that produe the mid-level parsing om-binators provided as part of the library.The type of a parser ombinator, written in ML-like notation, would beparse-results → parse-result6

(pakrat-hek-base <kind-objet> <semanti-value-aeptor>)→<om-binator>Returns a ombinator whih, if the next base token has token lass identi�er equalto the �rst argument (�kind-objet�), alls the seond argument (�semanti-value-aeptor�) with the semanti value of the next base token. The result of this allshould be another parser ombinator, whih is applied to the parse-results repre-senting the remainder of the input stream.The type of the semanti value aeptor, written in ML-like notation, would besemantiValue → parserCombinatoror, more fully expanded,semantiValue → parse-results → parse-resultThese types reall the types of funtions that work with monads1.(pakrat-hek <ombinator> <semanti-value-aeptor>) → <ombi-nator>Returns a ombinator whih attempts to parse using the �rst argument, and ifthe parse is suessful, hands the resulting semanti value to the semanti-value-aeptor (whih has the same type as the semanti-value-aeptors passed to pakrat-hek-base) and ontinues parsing using the resulting ombinator.(pakrat-or <ombinator> <ombinator>) → <ombinator>Returns a ombinator whih attempts to parse using the �rst argument, only tryingthe seond argument if the �rst argument fails to parse the input. This is the basiombinator used to implement a hoie among several alternative means of parsingan input stream.(pakrat-unless <string> <ombinator> <ombinator>) → <ombina-tor>The ombinator returned from this funtion �rst tries the �rst ombinator given. Ifit fails, the seond is tried; otherwise, an error message ontaining the given stringis returned as the result. This an be used to assert that a partiular sequene oftokens does not our at the urrent position before ontinuing on. (This is the�not-followed-by� mather, from setion 4.1.6 of [3℄.)3 The pakrat-parser maroThe pakrat-parser maro provides syntati sugar for building omplex parser om-binators from simpler ombinators. The general form of the maro, in an EBNF-likelanguage, is:(pakrat-parser <result-expr> <nonterminal-definition>*)where1and, of ourse, in languages like Haskell, it is the norm to implement parser ombinators andrelated ode in a monadi style.
7

<nonterminal-definition> :==(<nonterminal-id> (<sequene> <body-expr>+)*)<sequene> :== (<part>*)<part> :== (! <part>*)| (/ <sequene>*)| <var> <- '<kind-objet>| <var> <- �| <var> <- <nonterminal-id>| '<kind-objet>| <nonterminal-id>Eah nonterminal-de�nition expands into a parser-ombinator. The olletion of de-�ned nonterminal parser-ombinators expands to a (begin) ontaining an internalde�nition for eah nonterminal.The result of the whole pakrat-parser form is the <result-expr> immediatelyfollowing the pakrat-parser keyword. Sine (begin) forms within (begin) formsare �attened out in Sheme, the <result-expr> an be used to introdue hand-written parser ombinators whih an all, and an be alled by, the nonterminalde�nitions built in the rest of the parser de�nition.Eah nonterminal de�nition expands into:(define (<nonterminal-id> results)(results->result results 'nonterminal-id(lambda ()(<...> results))))where <...> is the expanded alternation-of-sequenes ombinator formed from thebody of the nonterminal de�nition.An alternation (either impliit in the main body of a nonterminal de�nition, orintrodued via a <part> of the form (/ <sequene> ...)) expands to(pakrat-or <expansion-of-first-alternative>(pakrat-or <expansion-of-seond-alternative>...))This auses eah alternative to be tried in turn, in left-to-right order of ourrene.Whereever a <part> of the form �<var> <- ...� ours, a variable bindingfor <var> is made available in the <body-expr>s that make up eah arm of anonterminal de�nition. The variable will be bound to the semanti value resultingfrom parsing aording to the parser de�nition to the right of the arrow (the �...�above).The (! <part> ...) syntax expands into an invoation of pakrat-unless.The ��� syntax in �<var> <- �� auses <var> to be bound to the parse-positionat that point in the input stream. This an be used for annotating abstrat syntaxtrees with loation information.<part>s of the form '<kind-objet> expand into invoations of pakrat-hek-base; those of the form <nonterminal-id> expand into invoations of pakrat-hek, with the proedure assoiated with the named nonterminal passed in as theombinator argument.4 Porting the library to other Sheme implementa-tionsThe library depends on R5RS Sheme's multiple-values support in only one plae,the interfae to the proedure base-generator->results. The maro pakrat-parser8

is implemented using R5RS syntax-rules. The library also depends on these SR-FIs:
• SRFI-1 (lists)
• SRFI-9 (reords)
• SRFI-6 (basi string ports) (only used in one plae, for error reporting, in thepakrat-parser maro)5 Examples5.1 A base-generator for an input stream of haratersThis generator reads haraters from a Sheme port, maintaining an input posi-tion and produing base tokens with eah harater in both token lass identi-�er and semanti value position. When using a parse-results reord over an inputstream built from this generator, the funtions parse-results-token-kind andparse-results-token-valuewill both return the same harater. To use the gen-erator, pass the result of the generator funtion to base-generator->results.(define (generator filename port)(let ((ateof #f)(pos (top-parse-position filename)))(lambda ()(if ateof(values pos #f)(let ((x (read-har port)))(if (eof-objet? x)(begin(set! ateof #t)(values pos #f))(let ((old-pos pos))(set! pos (update-parse-position pos x))(values old-pos (ons x x)))))))))5.2 A base-generator for a higher-level input stream of lex-emes/tokensThis generator skethes the onstrution of more ompliated lexeme or token-basedsubstrates for the pakrat parser ombinators. It reads tokens from a preomputedlist of token-lass/semanti-value pairs; in a more realisti situation, the list oflexemes would be omputed on demand. Sine we're reading from a list, withno real position information available, we return #f as the �rst of the two valuesexpeted from the generator, to indiate �unknown loation� at every step of theway. (define (generator tokens)(let ((stream tokens))(lambda ()(if (null? stream)(values #f #f)(let ((base-token (ar stream)))(set! stream (dr stream))(values #f base-token))))))9

5.3 A simple alulatorThis example builds on the generator from setion 5.2. It implements a simplealulator, supporting addition, multipliation, and grouping operators. The parserexpets an input stream of base-tokens with token lass identi�ers drawn from theset (num oparen paren + *).(define al (pakrat-parser expr(expr ((a <- mulexp '+ b <- mulexp)(+ a b))((a <- mulexp) a))(mulexp ((a <- simple '* b <- simple)(* a b))((a <- simple) a))(simple ((a <- 'num) a)(('oparen a <- expr 'paren) a))))5.4 An example alulator sessionThis session uses the de�nitions of generator and al from setions 5.2 and 5.3.Welome to MzSheme version 209, Copyright () 2004 PLT Sheme, In.> (require "pakrat.ss")> (define (generator tokens) [...℄)> (define al [...℄)> (define g (generator'((num . 1) (+) (num . 2) (*) (num . 3))))> (define r (al (base-generator->results g)))> (parse-result-suessful? r)#t> (parse-result-semanti-value r)7> (define g (generator'((oparen) (num . 1) (+) (num . 2) (paren) (*) (num . 3))))> (define r (al (base-generator->results g)))> (parse-result-suessful? r)#t> (parse-result-semanti-value r)9>Referenes[1℄ Alexander Birman and Je�rey D. Ullman. Parsing algorithms with baktrak.Information and Control, 23(1):1�34, August 1973.[2℄ Bryan Ford. Parsing expression grammars: A reognition-based syntati foun-dation.[3℄ Bryan Ford. Pakrat parsing: a pratial linear-time algorithm with baktrak-ing. Master's thesis, Massahusetts Institute of Tehnology, Sep 2002.[4℄ Bryan Ford. Pakrat parsing: Simple, powerful, lazy, linear time. In Proeedingsof the 2002 International Conferene on Funtional Programming, Ot 2002.10

