A Portable Packrat Parser Library for Scheme

Tony Garnock-Jones <tonyg@Ishift.net>
27th August 2005

Packrat parsing is a memoizing, backtracking recursive-descent parsing tech-
nique that runs in time and space linear in the size of the input text. The technique
was originally discovered by Alexander Birman in 1970 [1], and Bryan Ford took
up the idea for his master’s thesis in 2002 [4, 3, 2]. For detailed information on the
technique, please see Bryan Ford’s web page at

http://pdos.csail.mit.edu/ baford/packrat/

This document describes an R5RS Scheme library of parsing combinators imple-
mented using the packrat parsing algorithm. The main interfaces are the packrat-parse
macro (section 3) and the combinators into which it expands (section 2), the
base-generator->results function (section 1.2), and the accessors for parse-result
records (section 1.1).

1 Data Structures

This section describes the data structures that make up the core of the packrat
parsing algorithm, and some of the low-level procedures that operate on them.

1.1 parse-result

A parse-result record describes the results of an attempt at a parse at a particular
position in the input stream. It can either record a successful parse, in which case
it contains an associated semantic-value, or a failed parse, in which case it contains
a parse-error structure.

(parse-result? <object>) — <boolean>

This is a predicate which answers #t if and only if its argument is a parse-result
record.

(parse-result-successful? <parse-result>) — <boolean>

This predicate returns #t if its argument represents a successful parse, or #f if it
represents a failed parse.

(parse-result-semantic-value <parse-result>) — <object> or #f

If the argument represents a successful parse, this function returns the associated
semantic-value; otherwise, it will return #f.

(parse-result-next <parse-result>) — <parse-results> or #f

If the argument represents a successful parse, this function returns a parse-results
record representing the parsed input stream starting immediately after the parse
this parse-results represents. For instance, given an input stream [a, b, c, d, €], if
the parse-result given to parse-result-next had completed successfully, consuming
the [a, b, c] prefix of the input stream and producing some semantic value, then
the parse-results returned from parse-result-next would represent all possible parses
starting from the [d, e] suffix of the input stream.

(parse-result-error <parse-result>) — <parse-error> or #f

If the argument represents a failed parse, this function returns a parse-error struc-
ture; otherwise, it may return a parse-error structure for internal implementation
reasons (to do with propagating errors upwards for improved error-reporting - see
section 3.2.4 of [3]), or it may return #f.

(make-result <semantic-value> <next-parse-results>) — <parse-result>

This function constructs an instance of parse-result representing a successful parse.
The first argument is used as the semantic value to include with the new parse-
result, and the second argument should be a parse-results structure representing
the location in the input stream from which to continue parsing.

(make-expected-result <parse-position> <object>) — <parse-result>

This function constructs an instance of parse-result representing a failed parse. The
parse-position in the first argument and the value in the second argument are used
to construct a variant of a parse-error record for inclusion in the parse-result that
reports that a particular kind of value was expected at the given parse-position.

(make-message-result <parse-position> <string>) — <parse-result>

This function constructs an instance of parse-result representing a failed parse. The
parse-position in the first argument and the string in the second argument are used
to construct a variant of a parse-error record for inclusion in the parse-result that
reports a general error message at the given parse position.

(merge-result-errors <parse-result > <parse-err0r>) — <parse-result>

This function propagates error information through a particular parse result. The
parse-error contained in the first argument is combined with the parse-error from
the second argument, and the resulting parse-error structure is returned embedded
in the error field of a copy of the first argument.

1.2 parse-results

A parse-results record notionally describes all possible parses that can be attempted
from a particular point in an input stream, and the results of those parses. It
contains a parse-position record, which corresponds to the position in the input
stream that this parse-results represents, and a map associating “key objects” with
instances of parse-result.
Atomic input objects (known as “base values”; usually either characters or token /semantic-

value pairs) are represented specially in the parse-results data structure, as an op-
timisation: the two fields base and next represent the implicit successful parse of a

base value at the current position. The base field contains a pair of a token-class-
identifier and a semantic value unless the parse-results data structure as a whole is
representing the end of the input stream, in which case it will contain #f.

(parse-results? <object>) — <boolean>

This is a predicate which answers #t if and only if its argument is a parse-results
record.

(parse-results-position <parse-results>) — <parse-position> or #f

Returns the parse-position corresponding to the argument. An unknown position
is represented by #{.

(parse-results-base <parse-results>) — (cons <kind-object> <value-object>)
or #f

If the argument corresponds to the end of the input stream, this function returns
#f; otherwise, it returns a pair, where the car is to be interpreted as a base lexical
token class identifier (for instance, “symbol”, “string”, “number”) and the cdr is to
be interpreted as the semantic value of the token.

(parse-results-token-kind <parse-results>) — <kind-object> or #f

This function returns the car (the token class identifier) of the result of parse-results-
base, if that result is a pair; otherwise it returns #f.

(parse-results-token-value <parse-results>) — <value-object> or #f

This function returns the cdr (the semantic value) of the result of parse-results-base,
if that result is a pair; otherwise it returns #f.

(parse-results-next <parse-results>) — <parse-results> or #f

This function returns the parse-results record representing the position in the input
stream immediately after the argument’s base token. For instance, if the base
tokens used represented characters, then this function would return the parse-results
representing the next character position; or, if the base tokens represented lexemes,
then this function would return a representation of the results obtainable starting
from the next lexeme position. The value #f is returned if there is no next position
(that is, if the argument represents the final possible position before the end-of-
stream).

(base-generator->results <generator-function>) — <parse-results>

This function is used to set up an initial input stream of base tokens. The argument
is to be a nullary function returning multiple-values, the first of which is to be a
parse-position record or #f, and the second of which is to be a base token, that is a
pair of a token class identifier and a semantic value. The argument is called every
time the parser needs to read a fresh base token from the input stream.

(prepend-base <parse-position> <base-value> <parse-results>) — <parse-
results>

This function effectively prepends a base token to a particular parse-results. This
can be useful when implementing extensible parsers: using this function in a suitable
loop, it is possible to splice together two streams of input.

For instance, if r is a parse-results representing parses over the input token
stream *((b . 2) (c . 3)), then the result of the call

(prepend-base #f ’(a . 1) 1)

is a new parse-results representing parses over the input stream *((a . 1) (b

2) (c . 3)).

The first argument to prepend-base, the parse-position, should be either a parse-
position representing the location of the base token being prepended, or #f if the
input position of the base token is unknown.

(prepend-semantic-value <parse-position> <key-object> <semantic-value>
<parse-results>) — <parse-results>

This function is similar to prepend-base, but prepends an already-computed se-
mantic value to a parse-results, again primarily for use in implementing extensible
parsers. The resulting parse-results is assigned the given parse-position, and has
an entry in its result map associating the given key-object with the given semantic-
value and input parse-results.

(results- >result <parse-results> <key-object> <result-thunk>) — <parse-
result>

This function is the central function that drives the parsing process. It examines
the result map in the parse-results given to it, searching for an entry matching the
given key-object. If such an entry is found, the parse-result structure associated
with the key is returned; otherwise, the nullary result-thunk is called, and the
resulting parse-result is both stored into the result map and returned to the caller
of results->result.

1.3 parse-error

Parse-error structures represent collected error information from attempted parses.
They contain two kinds of error report, following [3]: a collection of “expected token”
messages, and a collection of free-format message strings.

(parse-error? <object>) — <boolean>

This is a predicate which answers #t if and only if its argument is a parse-error
record.

(parse-error-position <parse-error>) — <parse-position> or #f
Retrieves the parse-position in the input stream that this parse-error is describing.
A #f result indicates an unknown position.

(parse-error-expected <parse-error>) — (list-of <object>)

Retrieves the set (represented as a list) of token class identifiers that could have
allowed the parse to continue from this point.

(parse-error-messages <parse-error>) — (list-of <string>)

Retrieves the list of error messages associated with this parse-error.

(make-error-expected <parse-position> <object>) — <parse-error>
Constructs an “expected token” parse-error record from its arguments. Called by
make-expected-result (section 1.1).

(make-error-message <parse-position> <string>) — <parse-error>

Constructs an “general error message” parse-error record from its arguments. Called
by make-message-result (section 1.1).

(parse-error-empty? <parse-error>) — <boolean>

Returns #t if its argument contains no expected tokens, and no general error mes-
sages; otherwise returns #f. Used internally by merge-parse-errors (section 1.3).
(merge-parse-errors <parse-error> <parse-error>) — < parse-error>

Merges two parse-error records, following [3]. If one record represents a position
earlier in the input stream than the other, then that record is returned; if they both
represent the same position, the “expected token” sets are unioned and the general
message lists are appended to form a new parse-error record at the same position.
The standard parsing combinators call this function as appropriate to propagate
error information through the parse.

1.4 parse-position

A parse-position record represents a character location in an input stream.
(make-parse-position <filename> <linenumber> <columnnumber>) —
< parse-position>

Constructs a parse-position record from its arguments. The given filename may be
#f if the filename is unknown or not appropriate for the input stream the parse-
position is indexing into.

(parse-position? <object>) — <boolean>

This is a predicate which answers #t if and only if its argument is a parse-position
record.

(parse-position-file <parse-position>) — <string> or #f

Retrieves the filename associated with a parse-position record. Returns #f if the
filename is absent or not appropriate for this input stream.

(parse-position-line <parse-position>) — <number>

Retrieves the line number this parse-position represents. Line numbers begin at 1;
that is, all characters on the very first line in a file will have line number 1.

(parse-position-column <parse-position>) — <number>

Retrieves the column number within a line that this parse-position represents. Col-
umn numbers begin at 0; that is, the very first character of the very first line in a
file will have line number 1 and column number 0.

(top-parse-position <string>) — <parse-position>

Constructs a parse-position representing the very beginning of an input stream.
The argument is passed into make-parse-position as the “filename” parameter, and
so may be either a string or #f.

(update-parse-position <parse-position> <character>) — <parse-position>

Given a position, and the character occurring at that position, returns the position
of the next character in the input stream. Most characters simply increment the
column number. Exceptions to this rule are: #\return, which resets the column
number to zero; #\newline, which both resets the column number to zero and
increments the line number; and #\tab, which increments the column number to
the nearest multiple of eight, just as a terminal with an eight-column tab stop
setting might do.

(parse-position->string <parse-position>) — <string>

Converts a parse-position record into an emacs-compatible display format. If the
filename in the parse-position is unknown, the string “<?7>” is used in its place.
The result is of the form

filename:linenumber:columnnumber
for example,

main.c:33:7

(parse-position>? <parse-position> <parse-position>) — <boolean>

Returns #t if the first parse-position is more advanced in the input stream than the
second parse-position. Either or both positions may be #f, representing unknown
positions; an unknown position is considered to be less advanced in the input stream
than any known position. Note that the filename associated with each parse-position
is completely ignored — it is the caller’s responsibility to ensure the two positions
are associated with the same input stream.

2 Parsing Combinators

Parsing combinators are functions taking a parse-results structure and returning
a parse-result structure. Each combinator attempts to parse the input stream in
some manner, and the result of the combinator is either a successful parse with an
associated semantic value, or a failed parse with an assocated error record.

This section describes the procedures that produce the mid-level parsing com-
binators provided as part of the library.

The type of a parser combinator, written in ML-like notation, would be

parse-results — parse-result

(packrat-check-base <kind-object> <semantic-value-acceptor>) — <com-
binator>

Returns a combinator which, if the next base token has token class identifier equal
to the first argument (“kind-object”), calls the second argument (“semantic-value-
acceptor”) with the semantic value of the next base token. The result of this call
should be another parser combinator, which is applied to the parse-results repre-
senting the remainder of the input stream.

The type of the semantic value acceptor, written in ML-like notation, would be

semanticValue — parserCombinator
or, more fully expanded,
semanticValue — parse-results — parse-result

These types recall the types of functions that work with monads’.

(packrat-check <combinator> <semantic-value-acceptor>) — <combi-
nator>

Returns a combinator which attempts to parse using the first argument, and if
the parse is successful, hands the resulting semantic value to the semantic-value-
acceptor (which has the same type as the semantic-value-acceptors passed to packrat-
check-base) and continues parsing using the resulting combinator.

(packrat-or <combinator> <combinator>) — <combinator>

Returns a combinator which attempts to parse using the first argument, only trying
the second argument if the first argument fails to parse the input. This is the basic
combinator used to implement a choice among several alternative means of parsing
an input stream.

(packrat-unless <string> <combinator> <combinator>) — <combina-
tor>

The combinator returned from this function first tries the first combinator given. If
it fails, the second is tried; otherwise, an error message containing the given string
is returned as the result. This can be used to assert that a particular sequence of
tokens does not occur at the current position before continuing on. (This is the
“not-followed-by” matcher, from section 4.1.6 of [3].)

3 The packrat-parser macro

The packrat-parser macro provides syntactic sugar for building complex parser com-
binators from simpler combinators. The general form of the macro, in an EBNF-like
language, is:

(packrat-parser <result-expr> <nonterminal-definition>%*)

where

Land, of course, in languages like Haskell, it is the norm to implement parser combinators and
related code in a monadic style.

<nonterminal-definition> :==
(<nonterminal-id> (<sequence> <body-expr>+)*)
<sequence> :== (<part>*)
<part> :== (! <part>%*)
| (/ <sequence>*)
| <var> <- ’<kind-object>
| <var> <- @
| <var> <- <nonterminal-id>
| ’<kind-object>
| <nonterminal-id>

Each nonterminal-definition expands into a parser-combinator. The collection of de-
fined nonterminal parser-combinators expands to a (begin) containing an internal
definition for each nonterminal.

The result of the whole packrat-parser form is the <result-expr> immediately
following the packrat-parser keyword. Since (begin) forms within (begin) forms
are flattened out in Scheme, the <result-expr> can be used to introduce hand-
written parser combinators which can call, and can be called by, the nonterminal
definitions built in the rest of the parser definition.

Each nonterminal definition expands into:

(define (<nonterminal-id> results)
(results->result results ’nonterminal-id
(lambda ()
(<...> results))))

where <...> is the expanded alternation-of-sequences combinator formed from the
body of the nonterminal definition.

An alternation (either implicit in the main body of a nonterminal definition, or
introduced via a <part> of the form (/ <sequence> ...)) expands to

(packrat-or <expansion-of-first-alternative>
(packrat-or <expansion-of-second-alternative>

ce))

This causes each alternative to be tried in turn, in left-to-right order of occurrence.

Whereever a <part> of the form “<var> <- ...” occurs, a variable binding
for <var> is made available in the <body-expr>s that make up each arm of a
nonterminal definition. The variable will be bound to the semantic value resulting
from parsing according to the parser definition to the right of the arrow (the “...”
above).

The (! <part> ...) syntax expands into an invocation of packrat-unless.

The “@” syntax in “<var> <- @” causes <var> to be bound to the parse-position
at that point in the input stream. This can be used for annotating abstract syntax
trees with location information.

<part>s of the form ’<kind-object> expand into invocations of packrat-check-
base; those of the form <nonterminal-id> expand into invocations of packrat-
check, with the procedure associated with the named nonterminal passed in as the
combinator argument.

4 Porting the library to other Scheme implementa-
tions

The library depends on R5RS Scheme’s multiple-values support in only one place,
the interface to the procedure base-generator->results. The macro packrat-parser

is implemented using R5RS syntax-rules. The library also depends on these SR-
FIs:

e SRFI-1 (lists)
e SRFI-9 (records)

e SRFI-6 (basic string ports) (only used in one place, for error reporting, in the
packrat-parser macro)

5 Examples

5.1 A base-generator for an input stream of characters

This generator reads characters from a Scheme port, maintaining an input posi-
tion and producing base tokens with each character in both token class identi-
fier and semantic value position. When using a parse-results record over an input
stream built from this generator, the functions parse-results-token-kind and
parse-results-token-value will both return the same character. To use the gen-
erator, pass the result of the generator function to base-generator->results.

(define (generator filename port)
(let ((ateof #f)
(pos (top-parse-position filename)))
(lambda ()
(if ateof
(values pos #f)
(let ((x (read-char port)))
(if (eof-object? x)
(begin
(set! ateof #t)
(values pos #f))
(let ((old-pos pos))
(set! pos (update-parse-position pos x))
(values old-pos (cons x x)))))))))

5.2 A base-generator for a higher-level input stream of lex-
emes/tokens

This generator sketches the construction of more complicated lexeme or token-based
substrates for the packrat parser combinators. It reads tokens from a precomputed
list of token-class/semantic-value pairs; in a more realistic situation, the list of
lexemes would be computed on demand. Since we’re reading from a list, with
no real position information available, we return #f as the first of the two values
expected from the generator, to indicate “unknown location” at every step of the
way.

(define (generator tokens)
(let ((stream tokens))
(lambda ()
(if (null? stream)
(values #f #f)
(let ((base-token (car stream)))
(set! stream (cdr stream))
(values #f base-token))))))

5.3 A simple calculator

This example builds on the generator from section 5.2. It implements a simple
calculator, supporting addition, multiplication, and grouping operators. The parser
expects an input stream of base-tokens with token class identifiers drawn from the
set (num oparen cparen + *).

(define calc (packrat-parser expr
(expr ((a <- mulexp ’+ b <- mulexp)
(+ a b))
((a <- mulexp) a))
(mulexp ((a <- simple ’* b <- simple)
(x a b))
((a <- simple) a))
(simple ((a <- ’num) a)
((’oparen a <- expr ’cparen) a))))

5.4 An example calculator session

This session uses the definitions of generator and calc from sections 5.2 and 5.3.

Welcome to MzScheme version 209, Copyright (c) 2004 PLT Scheme, Inc.
(require "packrat.ss")
(define (generator tokens) [...])
(define calc [...])
(define g (generator
’((num . 1) (+) (num . 2) (%) (num . 3))))
(define r (calc (base-generator->results g)))
> (parse-result-successful? r)
#t

vV V V V

\Y

\

(parse-result-semantic-value r)

\

(define g (generator
>((oparen) (num . 1) (+) (num . 2) (cparen) (¥) (num . 3))))
> (define r (calc (base-generator->results g)))
> (parse-result-successful? r)
#t
> (parse-result-semantic-value r)

9
>

References

[1] Alexander Birman and Jeffrey D. Ullman. Parsing algorithms with backtrack.
Information and Control, 23(1):1-34, August 1973.

[2] Bryan Ford. Parsing expression grammars: A recognition-based syntactic foun-
dation.

[3] Bryan Ford. Packrat parsing: a practical linear-time algorithm with backtrack-
ing. Master’s thesis, Massachusetts Institute of Technology, Sep 2002.

[4] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time. In Proceedings
of the 2002 International Conference on Functional Programming, Oct 2002.

10

