Ordinary Differential Equations
This chapter describes funtions for solving ordinary differential equation (ODE) initial value problems. The PLT Scheme Science Collection provides a variety of low-level methods, such as Runge-Kutta and Bulirsch-Stoer routines, and higher-level components for adaptive step-size control. The components can be combined by the user to achieve the desired solution, with full access to any intermediate steps. The functions described in this chapter are defined in the ode-initval.ss file in the science collection and are made available using the form:
(require (planet "ode-initval.ss" ("williams" "science.plt")))
10.1 Defining the ODE System
The routines solve the general n-dimensional first-order system,
for i = 1, ..., n. The stepping functions rely on the vector of derivatives fi and the Jacobian matrix, Jij = dfi(t, y(t))/dyj. A system of equations is defined using the ode-system structure.
Structure:
ode-system |
|
10.2 Stepping Functions
The lowest level components are the stepping functions that advance a solution from time t to t + h for a fixed step size h and estimate the resulting local error.
Function:
(make-ode-step step-type dim) |
Contract: (-> ode-step-type? natural? ode-step?) |
|
Function:
(ode-step-reset step) |
Contract: (-> ode-step? void) |
|
Function:
(ode-step-name step) |
Contract: (-> ode-step? string?) |
|
Function:
(ode-step-order step) |
Contract: (-> ode-step? natural?) |
|
Function:
(ode-step-apply step t h y y-err dydt-in dydt-out dydt) |
Contract: (-> ode-step? real? real? (vector-of real?) (vector-of real?) (vector-of real?) (vector-of real?) ode-system? void) |
|
The following stepping algorithms are available.
Embedded Runge-Kutta (2,3) method.
4th order (classical) Runge-Kutta.
Embedded Runge-Kutta-Fehlberg (4,5) method. This method is a good general-purpose integrator.
10.3 Adaptive Step-Size Control
The control function examines the proposed change to the solution and its error estimate produced by a stepping function and attempts to determine the optimal step-size for a user-specified level of error.
Function:
(ode-control-standard-new eps-abs eps-rel a-y a-dydt) |
Contract: (-> real? real? real? real?) |
|
The step size adjustment procedure for this method begins by computing the desired error level Di for each component,
and comparing it with the observed error Ei = |yerri|. If the observed error E exceeds the desired error level D by more than 10% for any component, then the method reduces the step size by an appropriate factor,
where q is the consistency order of the method (e.g. q=4 for 4(5) embedded RK), and S is a safety factor of 0.9. The ratio E/D is taken to be the maximum of the ratios Ei/Di.
If the observed error E is less than 50% of the desired level D for the maximum ratio Ei/DI, then the algorithm takes the opportunity to increase the step size to bring the error in line with the desired level,
This encompasses all the standard scaling methods. To avoid uncontrolled changes in the step size, the overall scaling factor is limited to the range 1/5 to 5.
Function:
(ode-control-y-new eps-abs eps-rel) |
Contract: (-> real? real?) |
|
Function:
(ode-control-yp-new eps-abs eps-rel) |
Contract: (-> real? real?) |
|
Function:
(ode-control-scaled-new eps-abs eps-rel a-y a-dydt scale-abs dim) |
Contract: (-> real? real? real? real? (vector-of real?) natural?) |
|
where si is the ith component of the array scale-abs. The same error control heuristic is used by the Matlab ODE suite.
Function:
(make-ode-control control-type) |
Contract: (-> ode-control-type? ode-control?) |
|
Function:
(ode-control-init control eps-abs eps-rel a-y a-dydt) |
Contract: (-> ode-control? real? real? real? real? any) |
|
Function:
(ode-control-h-adjust control step y y-err dydt h) |
Contract: (-> ode-control? ode-step (vectorof real?) (vectorof real?) (vectorof real?) box? any) |
|
Function:
(ode-control-name control) |
Contract: (-> ode-control? string?) |
|
(printf ("control method is '~a'~n" (ode-control-name control)))
would print something like control mathod is 'standard'.
10.4 Evolution
The highest-level of the system is the evolution function that combines the results of a stepping function and control function to reliably advance the solution forward over an interval (t0, t1). If the control function signals that the step size should be descreased, the evolution function backs out of the current step and tries the proposed smaller step size. This process is continued until an acceptable step size is found.
Function:
(make-ode-evolve dim) |
Contract: (-> positive? ode-evolve?) |
|
Function:
(ode-evolve-apply evolve control step system t t1 h y) |
Contract: (-> ode-evolve? ode-control? ode-step? ode-system? box? real? box? (vectorof real?) any) |
|
Function:
(ode-evolve-reset evolve) |
Contract: (-> ode-evolve? any) |
|
10.5 Examples
Example: The following programs solve the second-order nonlinear Van der Pol oscillator equation,
This can be converted into a first order system suitable for use with the routines described in this chapter by introducing a separate variable for the velocity, y = x'(t),
The following example integrates the above system of equations from t = 0.0 to 100.0 in increments of 0.01 using a 4th order Runge-Kutta stepping function.
(require (planet "ode-initval.ss" ("williams" "science.plt"))) (require (lib "plot.ss" "plot")) (define (func t y f params) (let ((mu (car params)) (y0 (vector-ref y 0)) (y1 (vector-ref y 1))) (vector-set! f 0 y1) (vector-set! f 1 (- (- y0) (* mu y1 (- (* y0 y0) 1.0)))))) (define (main) (let* ((type rk4-ode-type) (step (make-ode-step type 2)) (mu 10.0) (system (make-ode-system func #f 2 (list mu))) (t 0.0) (t1 100.0) (h 1.0e-2) (y #(1.0 0.0)) (y-err (make-vector 2)) (dydt-in (make-vector 2)) (dydt-out (make-vector 2)) (y0-values '()) (y1-values '())) (ode-system-function-eval system t y dydt-in) (let loop () (if (< t t1) (begin (ode-step-apply step t h y y-err dydt-in dydt-out system) ;(printf "~a ~a ~a~n" t (vector-ref y 0) (vector-ref y 1)) (set! y0-values (cons (vector t (vector-ref y 0)) y0-values)) (set! y1-values (cons (vector t (vector-ref y 1)) y1-values)) (vector-set! dydt-in 0 (vector-ref dydt-out 0)) (vector-set! dydt-in 1 (vector-ref dydt-out 1)) (set! t (+ t h)) (loop)))) (printf "~a~n" (plot (points (reverse y0-values)) (x-min 0.0) (x-max 100.0) (y-min -2.0) (y-max 2.0))) (printf "~a~n" (plot (points (reverse y1-values)) (x-min 0.0) (x-max 100.0)))))
Figures 67 and 68 show the resulting output plots of y0 and y1.
|
|
Example: The following example evolves the above system of equations from t = 0.0 to 100.0 maintaining an error in the y value of 1.0e-6 using a 4th order Runge-Kutta stepping function.
(require (planet "ode-initval.ss" ("williams" "science.plt"))) (require (lib "plot.ss" "plot")) (define (func t y f params) (let ((mu (car params)) (y0 (vector-ref y 0)) (y1 (vector-ref y 1))) (vector-set! f 0 y1) (vector-set! f 1 (- (- y0) (* mu y1 (- (* y0 y0) 1.0)))))) (define (main) (let* ((type rk4-ode-type) (step (make-ode-step type 2)) (control (control-y-new 1.0e-6 0.0)) (evolve (make-ode-evolve 2)) (mu 10.0) (system (make-ode-system func #f 2 (list mu))) (t (box 0.0)) (t1 100.0) (h (box 1.0e-6)) (y #(1.0 0.0)) (y0-values '()) (y1-values '())) (let loop () (if (< (unbox t) t1) (begin (ode-evolve-apply evolve control step system t t1 h y) ;(printf "~a ~a ~a~n" ; (unbox t) (vector-ref y 0) (vector-ref y 1)) (set! y0-values (cons (vector (unbox t) (vector-ref y 0)) y0-values)) (set! y1-values (cons (vector (unbox t) (vector-ref y 1)) y1-values)) (loop)))) (printf "Number of iterations = ~a~n" (ode-evolve-count evolve)) (printf "Number of failed steps = ~a~n" (ode-evolve-failed-steps evolve)) (printf "~a~n" (plot (points (reverse y0-values)) (x-min 0.0) (x-max 100.0) (y-min -2.0) (y-max 2.0))) (printf "~a~n" (plot (points (reverse y1-values)) (x-min 0.0) (x-max 100.0)))))
When run, it prints the following:
Number of iterations = 84575 Number of failed steps = 352
Figures 69 and 70 show the resulting output plots of y0 and y1.
|
|