Statistics
This chapter describes the statistical functions provided by the PLT Scheme Science Collection. The basic statistical functions include functions to compute the mean, variance, and standard deviation. More advanced functions allow you to calculate absolute deviation, skewness, and kurtosis, as well as the median and arbitrary percentiles. The algorithms use recurrance relations to compute average quantities in a stable way, without large intermediate values that might overflow.
The functions described in this chapter are defined in the statistics.ss file in the science collection and are made available ising the following form:
(require (planet "statistics.ss" ("williams" "science.plt")))
8.1 Mean, Standard Deviation, and Variance
Function:
(mean data) |
Contract: (-> (vectorof real?) real?) |
|
Function:
(variance data mu) (variance data) |
Contract: (case-> (-> (vector-of real?) real? (>=/c 0.0)) (-> (vector-of real?) (>=/c 0.0))) |
|
Function:
(standard-deviation data mu) (standard-deviation data) |
Contract: (case-> (-> (vector-of real?) real? (>=/c 0.0)) (-> (vector-of real?) (>=/c 0.0))) |
|
Function:
(variance-with-fixed-mean data mu) |
Contract: (-> (vector-of real?) real? (>=/c 0.0)) |
|
standard-deviation-with-fixed-mean
Function:
(standard-deviation-with-fixed-mean data mu) |
Contract: (-> (vector-of real?) real> (>=/c 0.0)) |
|
8.2 Absolute Deviation
Function:
(absolute-deviation data mu) (absolute-deviation data) |
Contract: (case-> (-> (vector-of real?) real? (>=/c 0.0)) (-> (vector-of real?) (>=/c 0.0))) |
|
8.3 Higher Moments (Skewness and Kurtosis)
Function:
(skew data mu sigma) (skew data) |
Contract: (case-> (-> (vector-of real?) real? (>=/c 0.0) real?) (-> (vector-of real?) real?))) |
|
Function:
(kurtosis data mu sigma) (kurtosis data) |
Contract: (case-> (-> (vector-of real?) real? (>=/c 0.0) real?) (-> (vector-of real?) real?))) |
|
8.4 Autocorrelation
Function:
(lag-1-autocorrelation data mu) (lag-1-autocorrelation data) |
Contract: (case-> (-> non-empty-vector-of-reals real? real?) (-> non-empty-vector-of-reals real?)) |
|
8.5 Covariance
Function:
(covariance data1 data 2 mu1 mu2) (covariance data1 data2) |
Contract: (case-> (->r ((data1 (vectorof real?)) (data2 (and/c (vectorof real?) (lambda (x) (= (vector-length data1) (vector-length data2))))) (mu1 real?) (mu2 real?)) real?) (->r ((data1 (vectorof real?)) (data2 (and/c (vectorof real?) (lambda (x) (= (vector-length data1) (vector-length data2))))) real?)) |
|
Function:
(covariance-with-fixed-means data1 data2) |
Contract: (->r ((data1 (vectorof real?)) (data2 (and/c (vectorof real?) (lambda (x) (= (vector-length data1) (vector-length data2))))) (mu1 real?) (mu2 real?)) real?) |
|
8.6 Weighted Samples
Function:
(weighted-mean w data) |
Contract: (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data)))))) real?) |
|
Function:
(weighted-variance w data wmu) (weighted-variance w data) |
Contract: (case-> (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (mu real?) (>=/c 0.0)) (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (>=/c 0.0))) |
|
Function:
(weighted-standard-deviation w data wmu) (weighted-standard-deviation w data) |
Contract: (case-> (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (mu real?) (>=/c 0.0)) (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (>=/c 0.0))) |
|
weighted-variance-with-fixed-mean
Function:
(weighted-variance-with-fixed-mean w data wmu) |
Contract: (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (mu real?) (>=/c 0.0)) |
|
weighted-standard-deviation-with-fixed-mean
Function:
(weighted-standard-deviation-with-fixed-mean w data wmu) |
Contract: (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (mu real?) (>=/c 0.0)) |
|
Function:
(weighted-absolute-deviation w data wmu) (weighted-absolute-deviation w data) |
Contract: (case-> (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (mu real?) (>=/c 0.0)) (->r ((w (vectorof real?)) (data (and/c (vectorof real?)+ (lambda (x) (= (vector-length w) (vector-length data))))) (>=/c 0.0))) |
|
Function:
(weighted-skew w data wmu wsigma) (weighted-skew w data) |
Contract: (case-> (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (mu real?) (sigma (>=/c 0.0))) real?) (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) real?)) |
|
Function:
(weighted-kurtosis w data wmu wsigma) (weighted-kurtosis w data) |
Contract: (case-> (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) (mu real?) (sigma (>=/c 0.0))) real?) (->r ((w (vectorof real?)) (data (and/c (vectorof real?) (lambda (x) (= (vector-length w) (vector-length data))))) real?)) |
|
8.7 Maximum and Minimum
Function:
(maximum data) |
Contract: (-> non-empty-vector-of-reals? real?) |
|
Function:
(minimun data) |
Contract: (-> non-empty-vector-of-reals? real?) |
|
Function:
(minimun-maximum data) |
Contract: (-> non-empty-vector-of-reals? (values real? real?)) |
|
Function:
(maximum-index data) |
Contract: (-> non-empty-vector-of-reals? natural-number?) |
|
Function:
(minimun-index data) |
Contract: (-> non-empty-vector-of-reals? natural-number?) |
|
Function:
(minimun-maximum-index data) |
Contract: (-> non-empty-vector-of-reals? (values natural-number? number?)) |
|
8.8 Median and Percentiles
The median and percentile functions described in this section operate on sorted data. The contracts for these functions enforce this. Also, for convenience we use quantiles measured on a scale of 0 to 1 instead of percentiles (which use a scale of 0 to 100).
Function:
(median-from-sorted-data sorted-data) |
Contract: (-> (and/c non-empty-vector-of-reals? sorted?) real?) |
|
Function:
(qualtile-from-sorted-data sorted-data f) |
Contract: (-> (and/c non-empty-vector-of-reals? sorted?) (real-in 0.0 1.0) real?) |
|
The quantile is found by interpolation using the formula
where i is floor((n - 1)f) and delta is (n - 1)f - 1.
8.9 Example
This example generates two vectors of data from a unit Gaussian distribution and a vector of cosine squared weighting data. All of the vectors are of length 1,000. These data are used to test all of the statistics functions.
(require (planet "gaussian.ss" ("williams" "science.plt") "random-distributions")) (require (planet "statistics.ss" ("williams" "science.plt"))) (require (planet "math.ss" ("williams" "science.plt"))) (define (naive-sort! data) (let loop () (let ((n (vector-length data)) (sorted? #t)) (do ((i 1 (+ i 1))) ((= i n) data) (if (< (vector-ref data i) (vector-ref data (- i 1))) (let ((t (vector-ref data i))) (vector-set! data i (vector-ref data (- i 1))) (vector-set! data (- i 1) t) (set! sorted? #f)))) (if (not sorted?) (loop))))) (let ((data1 (make-vector 1000)) (data2 (make-vector 1000)) (w (make-vector 1000))) (do ((i 0 (+ i 1))) ((= i 1000) (void)) ;; Random data from unit gaussian (vector-set! data1 i (random-unit-gaussian)) (vector-set! data2 i (random-unit-gaussian)) ;; Cos^2 weighting (vector-set! w i (expt (cos (- (* 2.0 pi (/ i 1000.0)) pi)) 2))) (printf "Statistics Example~n") (printf " mean = ~a~n" (mean data1)) (printf " variance = ~a~n" (variance data1)) (printf " standard deviation = ~a~n" (standard-deviation data1)) (printf " variance from 0.0 = ~a~n" (variance-with-fixed-mean data1 0.0)) (printf " standard deviation from 0.0 = ~a~n" (standard-deviation-with-fixed-mean data1 0.0)) (printf " absolute deviation = ~a~n" (absolute-deviation data1)) (printf " absolute deviation from 0.0 = ~a~n" (absolute-deviation data1 0.0)) (printf " skew = ~a~n" (skew data1)) (printf " kurtosis = ~a~n" (kurtosis data1)) (printf " lag-1 autocorrelation = ~a~n" (lag-1-autocorrelation data1)) (printf " covariance = ~a~n" (covariance data1 data2)) (printf " weighted mean = ~a~n" (weighted-mean w data1)) (printf " weighted variance = ~a~n" (weighted-variance w data1)) (printf " weighted standard deviation = ~a~n" (weighted-standard-deviation w data1)) (printf " weighted variance from 0.0 = ~a~n" (weighted-variance-with-fixed-mean w data1 0.0)) (printf "weighted standard deviation from 0.0 = ~a~n" (weighted-standard-deviation-with-fixed-mean w data1 0.0)) (printf " weighted absolute deviation = ~a~n" (weighted-absolute-deviation w data1)) (printf "weighted absolute deviation from 0.0 = ~a~n" (weighted-absolute-deviation w data1 0.0)) (printf " weighted skew = ~a~n" (weighted-skew w data1)) (printf " weighted kurtosis = ~a~n" (weighted-kurtosis w data1)) (printf " maximum = ~a~n" (maximum data1)) (printf " minimum = ~a~n" (minimum data1)) (printf " index of maximum value = ~a~n" (maximum-index data1)) (printf " index of minimum value = ~a~n" (minimum-index data1)) (naive-sort! data1) (printf " median = ~a~n" (median-from-sorted-data data1)) (printf " 10% quantile = ~a~n" (quantile-from-sorted-data data1 .1)) (printf " 20% quantile = ~a~n" (quantile-from-sorted-data data1 .2)) (printf " 30% quantile = ~a~n" (quantile-from-sorted-data data1 .3)) (printf " 40% quantile = ~a~n" (quantile-from-sorted-data data1 .4)) (printf " 50% quantile = ~a~n" (quantile-from-sorted-data data1 .5)) (printf " 60% quantile = ~a~n" (quantile-from-sorted-data data1 .6)) (printf " 70% quantile = ~a~n" (quantile-from-sorted-data data1 .7)) (printf " 80% quantile = ~a~n" (quantile-from-sorted-data data1 .8)) (printf " 90% quantile = ~a~n" (quantile-from-sorted-data data1 .9)) )
Produces the following output:
Statistics Example mean = 0.03457693091555611 variance = 1.0285343857083422 standard deviation = 1.0141668431320077 variance from 0.0 = 1.028701415474174 standard deviation from 0.0 = 1.014249188056946 absolute deviation = 0.7987180852601665 absolute deviation from 0.0 = 0.7987898146946209 skew = 0.043402934671178436 kurtosis = 0.17722452271704014 lag-1 autocorrelation = 0.0029930889831972143 covariance = 0.005782911085590894 weighted mean = 0.05096139259270008 weighted variance = 1.0500293763787367 weighted standard deviation = 1.0247094107007786 weighted variance from 0.0 = 1.0510513958491579 weighted standard deviation from 0.0 = 1.0252079768755011 weighted absolute deviation = 0.8054378524718832 weighted absolute deviation from 0.0 = 0.8052440544958938 weighted skew = 0.046448729539282155 weighted kurtosis = 0.3050060704791675 maximum = 3.731148814104969 minimum = -3.327265864298485 index of maximum value = 502 index of minimum value = 476 median = 0.019281803306206644 10% quantile = -1.243869878615807 20% quantile = -0.7816243947573505 30% quantile = -0.4708703241429585 40% quantile = -0.2299309332835332 50% quantile = 0.019281803306206644 60% quantile = 0.30022966479982344 70% quantile = 0.5317978807508836 80% quantile = 0.832291888537874 90% quantile = 1.3061151234700463