2.4.11 Trees
x : (atom x) |
y : (atom y) |
Determines if x is lexicographically less than y. Works on any atomic input.
Examples: |
> (alphorder 6 4) |
() |
> (alphorder 4 6) |
t |
> (alphorder 4 4) |
t |
> (alphorder "abc" "bcd") |
t |
> (alphorder "bcd" "abc") |
() |
> (alphorder #\a "a") |
t |
> (alphorder "a" #\a) |
() |
> (alphorder '(1 2 3) '(4 5 6)) |
|Dracula program| broke the contract (-> atom? atom? any) |
on #f; expected <atom?>, given: (1 2 3) |
x : t |
Returns true if x is not a cons pair.
Examples: |
> (atom 4) |
t |
> (atom 'hello) |
t |
> (atom (cons 4 nil)) |
() |
x : t |
y : (or (symbolp x) (symbolp y)) |
Tests two symbols for equality.
Examples: |
> (eq 'yes 'yes) |
t |
> (eq 'yes 'no) |
() |
> (eq "yes" "yes") |
|Dracula program| broke the contract (->r ((x ...) (y |
...)) ...) on #f; expected <symbolp>, given: "yes" |
x : t |
y : (or (eqlablep x) (eqlablep y)) |
Tests equality of two numbers, symbols, or characters.
Examples: |
> (eql 'yes 'yes) |
t |
> (eql 'yes 'no) |
() |
> (eql 5 5) |
t |
> (eql #\a #\b) |
() |
> (eql #\5 5) |
() |
> (eql "yes" "yes") |
|Dracula program| broke the contract (->r ((x ...) (y |
...)) ...) on #f; expected <eqlablep>, given: "yes" |
x : t |
Returns t if and only if x is either a number, a symbol, or a character.
Examples: |
> (eqlablep nil) |
t |
> (eqlablep 4) |
t |
> (eqlablep #\a) |
t |
> (eqlablep 'symbol) |
t |
> (eqlablep "string") |
() |
Tests x and y for equality. Returns t if and only if they are the same value.
Examples: |
> (equal "yes" "yes") |
t |
> (equal 'yes "no") |
() |
> (equal 'yes "yes") |
() |
x : t |
The identity function. Returns its argument unchanged.
Examples: |
> (identity 'x) |
x |
a : t |
b : t |
Determines if the two given items are in lexicographic order.
Examples: |
> (lexorder 6 4) |
() |
> (lexorder 4 6) |
t |
> (lexorder #\a #\b) |
t |
> (lexorder #\b #\a) |
() |
> (lexorder 'a 'b) |
t |
> (lexorder 'b 'a) |
() |
> (lexorder "abc" "bcd") |
t |
> (lexorder "bcd" "abc") |
() |
> (lexorder (list 1 2) (list 3 4)) |
t |
> (lexorder (list 3 4) (list 1 2)) |
() |
Shorthand macros for compositions of car and cdr. For instance, (caddr x) is equivalent to (car (cdr (cdr x))).
Examples: | |||||
| |||||
> (caar *tree*) | |||||
((0 . 1) 2 . 3) | |||||
> (cdar *tree*) | |||||
((4 . 5) 6 . 7) | |||||
> (cadr *tree*) | |||||
((8 . 9) 10 . 11) | |||||
> (cddr *tree*) | |||||
((12 . 13) 14 . 15) | |||||
> (caaar *tree*) | |||||
(0 . 1) | |||||
> (cdaar *tree*) | |||||
(2 . 3) | |||||
> (cadar *tree*) | |||||
(4 . 5) | |||||
> (cddar *tree*) | |||||
(6 . 7) | |||||
> (caadr *tree*) | |||||
(8 . 9) | |||||
> (cdadr *tree*) | |||||
(10 . 11) | |||||
> (caddr *tree*) | |||||
(12 . 13) | |||||
> (cdddr *tree*) | |||||
(14 . 15) | |||||
> (caaaar *tree*) | |||||
0 | |||||
> (cdaaar *tree*) | |||||
1 | |||||
> (cadaar *tree*) | |||||
2 | |||||
> (cddaar *tree*) | |||||
3 | |||||
> (caadar *tree*) | |||||
4 | |||||
> (cdadar *tree*) | |||||
5 | |||||
> (caddar *tree*) | |||||
6 | |||||
> (cdddar *tree*) | |||||
7 | |||||
> (caaadr *tree*) | |||||
8 | |||||
> (cdaadr *tree*) | |||||
9 | |||||
> (cadadr *tree*) | |||||
10 | |||||
> (cddadr *tree*) | |||||
11 | |||||
> (caaddr *tree*) | |||||
12 | |||||
> (cdaddr *tree*) | |||||
13 | |||||
> (cadddr *tree*) | |||||
14 | |||||
> (cddddr *tree*) | |||||
15 |
Examples: |
> 'a |
a |
> '(1 2 3 4) |
(1 2 3 4) |
Examples: |
> `a |
a |
> `(1 2 3 4) |
(1 2 3 4) |
Examples: |
> '(list ,a b c d) |
(list ,a b c d) |
new : t |
old : (eqlablep old) |
tree : t |
Substitutes every occurrence of old with new in the given tree. Uses eql as the test.
Examples: |
> (subst 2 1 (list 1 1 1 3 1 1 1)) |
(2 2 2 3 2 2 2) |
> (subst 'z 'a (list 'a 'b (list 'd 'a (list 'a 'e)) 'a)) |
(z b (d z (z e)) z) |
v : t |
Calculates the size of a value. This is the default recursion metric used for ACL2 termination proofs.
The size of a cons-pair is one more than the sum of the sizes of its car and cdr. The size of an integer is its absolute value, the size of a rational number is the sum of the sizes of its numerator and denominator, and the size of a complex number is one more than the sum of the sizes of its real and imaginary parts. The size of a string is its length. The size of all other values (characters and symbols) is 0.
Examples: |
> (acl2-count 3/4) |
7 |
> (acl2-count (complex 3 4)) |
8 |
> (acl2-count "ABCD") |
4 |
> (acl2-count 'ABCD) |
0 |
> (acl2-count '(a b c d)) |
4 |