On this page:
3.1 Overview of Scheme Unit
3.2 Checks
check
check-eq?
check-not-eq?
check-eqv?
check-equal?
check-not-equal?
check-pred
check-=
check-true
check-false
check-not-false
check-exn
check-not-exn
fail
check-regexp-match
3.2.1 Augmenting Information on Check Failure
make-check-info
make-check-name
make-check-params
make-check-location
make-check-expression
make-check-message
make-check-actual
make-check-expected
with-check-info*
with-check-info
3.2.2 Custom Checks
define-simple-check
define-binary-check
define-check
fail-check
3.2.3 The Check Evaluation Context
current-check-handler
current-check-around
3.3 Compound Testing Forms
3.3.1 Test Cases
test-begin
test-case
3.3.2 Test Suites
test-suite
3.3.2.1 Utilities for Defining Test Suites
define-test-suite
define/ provide-test-suite
test-suite*
3.3.3 Compound Testing Evaluation Context
current-test-name
current-test-case-around
test-suite-test-case-around
test-suite-check-around
3.4 Test Control Flow
before
after
around
delay-test
3.5 Miscellaneous Utilities
require/ expose
3.6 User Interfaces
3.6.1 Textual User Interface
run-tests
3.6.2 Graphical User Interface
3.7 Programmatically Running Tests and Inspecting Results
3.7.1 Result Types
exn: test
exn: test: check
test-result
test-failure
test-error
test-success
3.7.2 Functions to Run Tests
run-test-case
run-test
fold-test-results
foldts
Version: 4.0.2.3

3 SchemeUnit API

 (require (planet schematics/schemeunit:3))

3.1 Overview of SchemeUnit

There are three basic data types in SchemeUnit:

3.2 Checks

Checks are the basic building block of SchemeUnit. A check checks some condition. If the condition holds the check evaluates to #t. If the condition doesn’t hold the check raises an instance of exn:test:check with information detailing the failure.

Although checks are implemented as macros, which is necessary to grab source location, they are conceptually functions. This means, for instance, checks always evaluate their arguments. You can use check as first class functions, though you will lose precision in the reported source locations if you do so.

The following are the basic checks SchemeUnit provides. You can create your own checks using define-check.

(check op v1 v2 [message])  #t

  op : (-> any any (or/c #t #f))

  v1 : any

  v2 : any

  message : string? = ""

The simplest check. Succeeds if op applied to v1 and v2 is not #f, otherwise raises an exception of type exn:test:check. The optional message is included in the output if the check fails.

For example, the following check succeeds:

  (check < 2 3)

(check-eq? v1 v2 [message])  #t

  v1 : any

  v2 : any

  message : string? = ""

(check-not-eq? v1 v2 [message])  #t

  v1 : any

  v2 : any

  message : string? = ""

(check-eqv? v1 v2 [message])  #t

  v1 : any

  v2 : any

  message : string? = ""

(check-equal? v1 v2 [message])  #t

  v1 : any

  v2 : any

  message : string? = ""

(check-not-equal? v1 v2 [message])  #t

  v1 : any

  v2 : any

  message : string? = ""

Checks that v1 is (not) eq?, eqv?, or equal? to v2. The optional message is included in the output if the check fails.

For example, the following checks all fail:

  (check-eq? (list 1) (list 1) "allocated data not eq?")

  (check-not-eq? 1 1 "integers are eq?")

  (check-eqv? 1 1.0 "not eqv?")

  (check-equal? 1 1.0 "not equal?")

  (check-not-equal? (list 1) (list 1) "equal?")

(check-pred pred v [message])  #t

  pred : (-> any (or/c #t #f))

  v : any

  message : string? = ""

Checks that pred returns #t when applied to v. The optional message is included in the output if the check fails.

Here’s an example that passes and an example that fails:

  (check-pred string? "I work")

  (check-pred number? "I fail")

(check-= v1 v2 epsilon [message])  #t

  v1 : any

  v2 : any

  epsilon : number?

  message : string? = ""

Checks that v1 and v2 are within epsilon of one another. The optional message is included in the output if the check fails.

Here’s an example that passes and an example that fails:

  (check-= 1.0 1.01 0.01 "I work")

  (check-= 1.0 1.01 0.005 "I fail")

(check-true v [message])  #t

  v : any

  message : string? = ""

(check-false v [message])  #t

  v : any

  message : string? = ""

(check-not-false v [message])  #t

  v : any

  message : string? = ""

Checks that v is #t, #f, or not #f as appropriate. The optional message is included in the output if the check fails.

For example, the following checks all fail:

  (check-true 1)

  (check-false 1)

  (check-not-false #f)

(check-exn exn-predicate thunk [message])  #t

  exn-predicate : (-> any (or/c #t #f))

  thunk : (-> any)

  message : string? = ""

Checks that thunk raises an exception for which exn-predicate returns #t. The optional message is included in the output if the check fails. A common error is to use an expression instead of a function of no arguments for thunk. Remember that checks are conceptually functions.

Here are two example, one showing a test that succeeds, and one showing a common error:

  (check-exn exn?

             (lambda ()

               (raise (make-exn "Hi there"

                                (current-continuation-marks)))))

  ; Forgot to wrap the expression in a thunk. Don't do this!

  (check-exn exn?

             (raise (make-exn "Hi there"

                              (current-continuation-marks))))

(check-not-exn thunk [message])  #t

  thunk : (-> any)

  message : string? = ""

Checks that thunk does not raise any exceptions. The optional message is included in the output if the check fails.

(fail [message])  #t

  message : string? = ""

This checks fails unconditionally. Good for creating test stubs that youintend to fill out later. The optional message is included in the output if the check fails.

(check-regexp-match regexp string)  #t

  regexp : regexp?

  string : string?

Checks that regexp matches the string.

The following check will succeed:

  (check-regexp-match "a+bba" "aaaaaabba")

This check will fail:

  (check-regexp-match "a+bba" "aaaabbba")

3.2.1 Augmenting Information on Check Failure

When an check fails it stores information including the name of the check, the location and message (if available), the expression the check is called with, and the parameters to the check. Additional information can be stored by using the with-check-info* function, and the with-check-info macro.

(make-check-info name value)  check-info?

  name : symbol?

  value : any

A check-info structure stores information associated with the context of execution of an check.

The are several predefined functions that create check information structures with predefined names. This avoids misspelling errors:

(make-check-name name)  check-info?

  name : string?

(make-check-params params)  check-info?

  params : (listof any)

(make-check-location loc)  check-info?

  loc : (list any (or/c number? #f) (or/c number? #f) (or/c number? #f) (or/c number? #f))

(make-check-expression msg)  check-info?

  msg : any

(make-check-message msg)  check-info?

  msg : string?

(make-check-actual param)  check-info?

  param : any

(make-check-expected param)  check-info?

  param : any

(with-check-info* info thunk)  any

  info : (listof check-info?)

  thunk : (-> any)

Stores the given info on the check-info stack for the duration (the dynamic extent) of the execution of thunk

Example:

  (with-check-info*

   (list (make-check-info 'time (current-seconds)))

   (lambda () (check = 1 2)))

When this check fails the message

time: <current-seconds-at-time-of-running-check>

will be printed along with the usual information on an check failure.

(with-check-info ((name val) ...) body ...)

The with-check-info macro stores the given information in the check information stack for the duration of the execution of the body expressions. Name is a quoted symbol and val is any value.

Example:

  (for-each

   (lambda (elt)

     (with-check-info

      (('current-element elt))

      (check-pred odd? elt)))

   (list 1 3 5 7 8))

When this test fails the message

current-element: 8

will be displayed along with the usual information on an check failure.

3.2.2 Custom Checks

Custom checks can be defined using define-check and its variants. To effectively use these macros it is useful to understand a few details about a check’s evaluation model.

Firstly, a check should be considered a function, even though most uses are actually macros. In particular, checks always evaluate their arguments exactly once before executing any expressions in the body of the checks. Hence if you wish to write checks that evalute user defined code that code must be wrapped in a thunk (a function of no arguments) by the user. The predefined check-exn is an example of this type of check.

It is also useful to understand how the check information stack operates. The stack is stored in a parameter and the with-check-info forms evaluate to calls to parameterize. Hence check information has lexical scope. For this reason simple checks (see below) cannot usefully contain calls to with-check-info to report additional information. All checks created using define-simple-check or define-check grab some information by default: the name of the checks and the values of the parameters. Additionally the macro forms of checks grab location information and the expressions passed as parameters.

(define-simple-check (name param ...) expr ...)

The define-simple-check macro constructs a check called name that takes the params and an optional message as arguments and evaluates the exprs. The check fails if the result of the exprs is #f. Otherwise the check succeeds. Note that simple checks cannot report extra information using with-check-info.

Example:

To define a check check-odd?

  (define-simple-check (check-odd? number)

    (odd? number))

We can use these checks in the usual way:

  (check-odd? 3)  ; Success

  (check-odd? 2)  ; Failure

(define-binary-check (name pred actual expected))

(define-binary-check (name actual expected) expr ...)

The define-binary-check macro constructs a check that tests a binary predicate. It’s benefit over define-simple-check is in better reporting on check failure. The first form of the macro accepts a binary predicate and tests if the predicate holds for the given values. The second form tests if expr non-false.

Examples:

Here’s the first form, where we use a predefined predicate to construct a binary check:

  (define-binary-check (check-char=? char=? actual expected))

In use:

  (check-char=? (read-char a-port) #\a)

If the expression is more complicated the second form should be used. For example, below we define a binary check that tests a number if within 0.01 of the expected value:

  (define-binary-check (check-in-tolerance actual expected)

    (< (abs (- actual expected)) 0.01))

(define-check (name param ...) expr ...)

The define-check macro acts in exactly the same way as define-simple-check, except the check only fails if the macro fail-check is called in the body of the check. This allows more flexible checks, and in particular more flexible reporting options.

(fail-check)

The fail-check macro raises an exn:test:check with the contents of the check information stack.

3.2.3 The Check Evaluation Context

The semantics of checks are determined by the parameters current-check-around and current-check-handler. Other testing form such as test-begin and test-suite change the value of these parameters.

(current-check-handler)  (-> any/c any/c)

(current-check-handler handler)  void?

  handler : (-> any/c any/c)

Parameter containing the function that handles exceptions raised by check failures. The default behaviour is to print an error message including the exception message and stack trace.

(current-check-around)  (-> thunk any/c)

(current-check-around check)  void?

  check : (-> thunk any/c)

Parameter containing the function that handles the execution of checks. The default value wraps the evaluation of thunk in a with-handlers call that calls current-check-handler if an exception is raised.

3.3 Compound Testing Forms

3.3.1 Test Cases

As programs increase in complexity the unit of testing grows beyond a single check. For example, it may be the case that if one check fails it doesn’t make sense to run another. To solve this problem compound testing forms can be used to group expressions. If any expression in a group fails (by raising an exception) the remaining expressions will not be evaluated.

(test-begin expr ...)

A test-begin form groups the exprs into a single unit. If any expr fails the following ones are not evaluated.

For example, in the following code the world is not destroyed as the preceding check fails:

  (test-begin

    (check-eq? 'a 'b)

    ; This line won't be run

    (destroy-the-world))

(test-case name expr ...)

Like a test-begin except a name is associated with the group of exprs. The name will be reported if the test fails.

Here’s the above example rewritten to use test-case so the test can be named.

  (test-case

    "Example test"

    (check-eq? 'a 'b)

    ; This line won't be run

    (destroy-the-world))

3.3.2 Test Suites

Test cases can themselves be grouped into test suites. A test suite can contain both test cases and test suites. Unlike a check or test case, a test suite is not immediately run. Instead use one of the functions described in User Interfaces or Programmatically Running Tests and Inspecting Results.

(test-suite name [#:before before-thunk] [#:after after-thunk] test ...)

Constructs a test suite with the given name and tests. The tests may be test cases, constructed using test-begin or test-case, or other test suites.

The before-thunk and after-thunk are optional thunks (functions are no argument). They are run before and after the tests are run, respectively.

Unlike a check or test case, a test suite is not immediately run. Instead use one of the functions described in User Interfaces or Programmatically Running Tests and Inspecting Results.

For example, here is a test suite that displays Before before any tests are run, and After when the tests have finished.

  (test-suite

    "An example suite"

    #:before (lambda () (display "Before"))

    #:after  (lambda () (display "After"))

    (test-case

      "An example test"

      (check-eq? 1 1)))

3.3.2.1 Utilities for Defining Test Suites

There are some macros that simplify the common cases of defining test suites:

(define-test-suite name test ...)

The define-test-suite form creates a test suite with the given name (converted to a string) and tests, and binds it to the same name.

For example, this code creates a binding for the name example-suite as well as creating a test suite with the name "example-suite":

  (define-test-suite example-suite

    (check = 1 1))

(define/provide-test-suite name test ...)

This for is just like define-test-suite, and in addition it provides the test suite.

Finally, there is the test-suite* macro, which defines a test suite and test cases using a shorthand syntax:

(test-suite* name (test-case-name test-case-body

...) ...)

Defines a test suite with the given name, and creates test cases within the suite, with the given names and body expressions.

As far I know no-one uses this macro, so it might disappear in future versions of SchemeUnit.

3.3.3 Compound Testing Evaluation Context

Just like with checks, there are several parameters that control the semantics of compound testing forms.

(current-test-name)  (or/c string? false/c)

(current-test-name name)  void?

  name : (or/c string? false/c)

This parameter stores the name of the current test case. A value of #f indicates a test case with no name, such as one constructed by test-begin.

(current-test-case-around)  (-> (-> any/c) any/c)

(current-test-case-around handler)  void?

  handler : (-> (-> any/c) any/c)

This parameter handles evaluation of test cases. The value of the parameter is a function that is passed a thunk (a function of no arguments). The function, when applied, evaluates the expressions within a test case. The default value of the current-test-case-around parameters evaluates the thunk in a context that catches exceptions and prints an appropriate message indicating test case failure.

(test-suite-test-case-around thunk)  any/c

  thunk : (-> any/c)

The current-test-case-around parameter is parameterized to this value within the scope of a test-suite. This function creates a test case structure instead of immediately evaluating the thunk.

(test-suite-check-around thunk)  any/c

  thunk : (-> any/c)

The current-check-around parameter is parameterized to this value within the scope of a test-suite. This function creates a test case structure instead of immediately evaluating a check.

3.4 Test Control Flow

The before, after, and around macros allow you to specify code that is always run before, after, or around expressions in a test case.

(before before-expr expr1 expr2 ...)

Whenever control enters the scope execute the before-expr before executing expr-1, and expr-2 ...

(after expr-1 expr-2 ... after-expr)

Whenever control exits the scope execute the after-expr after executing expr-1, and expr-2 ... The after-expr is executed even if control exits via an exception or other means.

(around before-expr expr-1 expr-2 ... after-expr)

Whenever control enters the scope execute the before-expr before executing expr-1 expr-2 ..., and execute after-expr whenever control leaves the scope.

Example:

The test below checks that the file test.dat contains the string "foo". The before action writes to this file. The after action deletes it.

  (around

    (with-output-to-file "test.dat"

       (lambda ()

         (write "foo")))

    (with-input-from-file "test.dat"

      (lambda ()

        (check-equal? "foo" (read))))

    (delete-file "test.dat"))

(delay-test test1 test2 ...)

This somewhat curious macro evaluates the given tests in a context where current-test-case-around is parameterized to test-suite-test-case-around. This has been useful in testing SchemeUnit. It might be useful for you if you create test cases that create test cases.

3.5 Miscellaneous Utilities

The require/expose macro allows you to access bindings that a module does not provide. It is useful for testing the private functions of modules.

(require/expose module (id ...))

Requires id from module into the current module. It doesn’t matter if the source module provides the bindings or not; require/expose can still get at them.

Note that require/expose can be a bit fragile, especially when mixed with compiled code. Use at your own risk!

This example gets make-failure-test, which is defined in a SchemeUnit test:

  (require/expose (planet schematics/schemeunit:3/check-test) (make-failure-test))

3.6 User Interfaces

SchemeUnit provides a textual and a graphical user interface

3.6.1 Textual User Interface

 (require (planet schematics/schemeunit:3/text-ui))

The textual UI is in the text-ui module. It is run via the run-tests function

(run-tests test [verbosity])  natural-number/c

  test : (or/c test-case? test-suite?)

  verbosity : (symbols 'quite 'normal 'verbose) = 'normal

The given test is run and the result of running it output to the current-output-port. The output is compatable with the (X)Emacs next-error command (as used, for example, by (X)Emac’s compile function)

The optional verbosity is one of 'quiet, 'normal, or 'verbose. Quiet output displays only the number of successes, failures, and errors. Normal reporting suppresses some extraneous check information (such as the expression). Verbose reports all information.

run-tests returns the number of unsuccessful tests.

3.6.2 Graphical User Interface

The GUI has not yet been updated to this version of SchemeUnit.

3.7 Programmatically Running Tests and Inspecting Results

SchemeUnit provides an API for running tests, from which custom UIs can be created.

3.7.1 Result Types

(struct

 

(exn:test exn)

 

())

The base structure for SchemeUnit exceptions. You should never catch instances of this type, only the subtypes documented below.

(struct

 

(exn:test:check exn:test)

 

(stack))

  stack : (listof check-info)

A exn:test:check is raised when an check fails, and contains the contents of the check-info stack at the time of failure.

(struct

 

test-result

 

(test-case-name))

  test-case-name : (or/c string #f)

A test-result is the result of running the test with the given name (with #f indicating no name is available).

(struct

 

(test-failure test-result)

 

(result))

  result : any

Subtype of test-result representing a test failure.

(struct

 

(test-error test-result)

 

(result))

  result : exn

Subtype of test-result representing a test error.

(struct

 

(test-success test-result)

 

(result))

  result : any

Subtype of test-result representing a test success.

3.7.2 Functions to Run Tests

(run-test-case name action)  test-result

  name : (or/c string #f)

  action : (-> any)

Runs the given test case, returning a result representing success, failure, or error.

(run-test test)  (R = (listof (or/c test-result R)))

  test : (or/c test-case? test-suite?)

Runs the given test (test case or test suite) returning a tree (list of lists) of results

Example:

  (run-test

     (test-suite

      "Dummy"

      (test-case "Dummy" (check-equal? 1 2))))

(fold-test-results

 

result-fn

 

 

 

 

 

 

seed

 

 

 

 

 

 

test

 

 

 

 

 

 

#:run run

 

 

 

 

 

 

#:fdown fdown

 

 

 

 

 

 

#:fup fup)

 

 

'a

  result-fn : ('b 'c ... 'a . -> . 'a)

  seed : 'a

  test : (or/c test-case? test-suite?)

  run : (string (() -> any) . -> . 'b 'c ...)

  fdown : (string 'a . -> . 'a)

  fup : (string 'a . -> . 'a)

Fold result-fn pre-order left-to-right depth-first over the results of run. By default run is run-test-case and fdown and fup just return the seed, so result-fn is folded over the test results.

This function is useful for writing custom folds (and hence UIs) over test results without you having to take care of all the expected setup and teardown. For example, fold-test-results will run test suite before and after actions for you. However it is still flexible enough, via its keyword arguments, to do almost anything that foldts can. Hence it should be used in preference to foldts.

result-fn is a function from the results of run (defaults to a test-result) and the seed to a new seed

Seed is any value

Test is a test-case or test-suite

Run is a function from a test case name (string) and action (thunk) to any values.

FDown is a function from a test suite name (string) and the seed, to a new seed

FUp is a function from a test suite name (string) and the seed, to a new seed.

Examples:

The following code counts the number of successes

  (define (count-successes test)

    (fold-test-results

     (lambda (result seed)

       (if (test-success? result)

           (add1 seed)

           seed))

     0

     test))

The following code returns the symbol 'burp instead of running test cases. Note how the result-fn receives the value of run.

  (define (burp test)

    (fold-test-results

     (lambda (result seed) (cons result seed))

     null

     test

     #:run (lambda (name action) 'burp)))

(foldts fdown fup fhere seed test)  'a

  fdown : (test-suite string thunk thunk 'a -> 'a)

  fup : (test-suite string thunk thunk 'a 'a -> 'a)

  fhere : (test-case string thunk 'a -> 'a)

  seed : 'a

  test : (or/c test-case? test-suite?)

Foldts is a nifty tree fold (created by Oleg Kiselyov) that folds over a test in a useful way (fold-test-results isn’t that useful as you can’t specify actions around test cases).

Fdown is a function of test suite, test suite name, before action, after action, and the seed. It is run when a test suite is encountered on the way down the tree (pre-order).

Fup is a function of test suite, test suite name, before action, after action, the seed at the current level, and the seed returned by the children. It is run on the way up the tree (post-order).

Fhere is a function of the test case, test case name, the test case action, and the seed. (Note that this might change in the near future to just the test case. This change would be to allow fhere to discriminate subtypes of test-case, which in turn would allow test cases that are, for example, ignored).

Example:

Here’s the implementation of fold-test-results in terms of foldts:

  (define (fold-test-results suite-fn case-fn seed test)

    (foldts

     (lambda (suite name before after seed)

       (before)

       (suite-fn name seed))

     (lambda (suite name before after seed kid-seed)

       (after)

       kid-seed)

     (lambda (case name action seed)

       (case-fn

        (run-test-case name action)

        seed))

     seed

     test))

If you’re used to folds you’ll probably be a bit surprised that the functions you pass to foldts receive both the structure they operate on, and the contents of that structure. This is indeed unusual. It is done to allow subtypes of test-case and test-suite to be run in customised ways. For example, you might define subtypes of test case that are ignored (not run), or have their execution time recorded, and so on. To do so the functions that run the test cases need to know what type the test case has, and hence is is necessary to provide this information.

If you’ve made it this far you truly are a master SchemeUnit hacker. As a bonus prize we’ll just mention that the code in hash-monad.ss and monad.ss might be of interest for constructing user interfaces. The API is still in flux, so isn’t documented here. However, do look at the implementation of run-tests for examples of use.