;;; PLT Scheme Science Collection ;;; random-distributions/bernoulli.ss ;;; Copyright (c) 2004-2007 M. Douglas Williams ;;; ;;; This library is free software; you can redistribute it and/or ;;; modify it under the terms of the GNU Lesser General Public ;;; License as published by the Free Software Foundation; either ;;; version 2.1 of the License, or (at your option) any later version. ;;; ;;; This library is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;; Lesser General Public License for more details. ;;; ;;; You should have received a copy of the GNU Lesser General Public ;;; License along with this library; if not, write to the Free ;;; Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA ;;; 02111-1307 USA. ;;; ;;; ------------------------------------------------------------------- ;;; ;;; This module implements the bernoulli distribution. It is based on ;;; the Random Number Distributions in the GNU Scientific Library. ;;; ;;; Version Date Description ;;; 1.0.0 09/28/04 Marked as ready for Release 1.0. Added ;;; contracts for functions. (Doug Williams) ;;; 2.0.0 11/19/07 Added unchecked versions of functions and ;;; getting ready for PLT Scheme 4.0 (Doug Williams) (module binomial mzscheme (require (lib "contract.ss")) (provide (rename random-binomial unchecked-random-binomial) (rename binomial-pdf unchecked-binomial-pdf)) (provide/contract (random-binomial (case-> (-> random-source? (real-in 0.0 1.0) natural-number/c natural-number/c) (-> (real-in 0.0 1.0) natural-number/c natural-number/c))) (binomial-pdf (-> natural-number/c (real-in 0.0 1.0) natural-number/c (>=/c 0.0)))) (require "../random-source.ss") (require "../special-functions/gamma.ss") (require "beta.ss") ;; random-binomial: random-source x real x integer -> integer ;; random-binomial: real x integer -> integer ;; ;; This routine returns a random variate from a binomial distribution ;; with n independent trials and probability p. (define random-binomial (case-lambda ((r p n) (let ((a 0) (b 0) (k 0)) (let loop () (if (> n 10) (begin (set! a (+ 1 (quotient n 2))) (set! b (+ 1 n (- a))) (let ((x (unchecked-random-beta r (exact->inexact a) (exact->inexact b)))) (if (>= x p) (begin (set! n (- a 1)) (set! p (/ p x))) (begin (set! k (+ k a)) (set! n (- b 1)) (set! p (/ (- p x) (- 1.0 x)))))) (loop)))) (do ((i 0 (+ i 1))) ((= i n) k) (let ((u (unchecked-random-uniform r))) (if (< u p) (set! k (+ k 1))))))) ((p n) (random-binomial (current-random-source) p n)))) ;; binomial-pdf: integer x real x integer -> real ;; ;; This function computes the probability density p(x) at x for a ;; binomial distribution with n independent trials and probability p. (define (binomial-pdf k p n) (if (> k n) 0.0 (let ((ln_c_nk (unchecked-lnchoose n k))) (exp (+ ln_c_nk (* k (log p)) (* (- n k) (log (- 1.0 p)))))))) )